Product Category Rule (PCR)
for Preparing an
Environmental Product Declaration (EPD)
for Product Group

Commercial Steel Doors and/or Steel Frames
UL 9005

VERSION (March 10th, 2015)
VALID THROUGH (March 10th, 2020)
STEEL DOORS AND FRAMES

Versions overview

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Version by UL Environment with input from a coalition was accepted by the review panel</td>
<td></td>
</tr>
</tbody>
</table>

Editor's Notes:

This proposed PCR is based on modifications made to existing PCRs from other countries that address **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES**. In an effort to harmonize this PCR with existing PCRs, the PCR Guidance-Texts for doors, From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU), *Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report, Sep 2011* and *Part B: Requirements on the EPD for locks and fittings, and Automatic Doors, Automatic Gates, and Revolving Door Systems July 2013* were used as references.

This PCR was modified to reflect the North American circumstances, conformity with existing doors standards, and conformity with reference standards (ISO 21930, EN 15804). Revisions/discussion points to make this PCR applicable to the U.S. include: **UNITS, FUNCTIONAL UNIT**, impact assessment methods, testing methods and requirements, use phase options, references, and standards.

This PCR is intended to serve the global B2B and B2C markets, reflecting the global manufacturing and distribution networks for these products. It is expected that region-specific versions of this PCR will not differ significantly.

* * * * *

PROGRAM OPERATOR: UL Environment

The PCR has been prepared by UL Environment with input from a coalition of the following interested parties:

- ASSA ABLOY
- Builders Hardware Manufacturers Association
- Steelcraft
- Steel Door Institute
Commercial Steel Doors and/or Steel Frames
UL 9005

According to ISO 14025

The **PCR REVIEW** was conducted by:

<table>
<thead>
<tr>
<th>Panel Member</th>
<th>Panel Member</th>
<th>Panel Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamie Meil</td>
<td>Aaron Smith</td>
<td>Don Baker</td>
</tr>
<tr>
<td>Managing Director</td>
<td>Director of Sustainable Building Solutions, ASSA ABLOY Door Security Solutions</td>
<td>VP America’s Engineering</td>
</tr>
<tr>
<td>ATHENA Sustainable Materials Institute</td>
<td>110 Sargent Dr., New Haven, CT 06511</td>
<td>Allegion</td>
</tr>
<tr>
<td>119 Ross Avenue, Suite 100 Ottawa, Ontario Canada K1Y 0N6</td>
<td>aaron.smith@assaabloy.com</td>
<td>11819 N. Pennsylvania Street Carmel, IN 46032</td>
</tr>
<tr>
<td>Phone: 613-729-9996x224</td>
<td></td>
<td>(317) 810-3717</td>
</tr>
<tr>
<td>jamie.meil@athenasmi.org</td>
<td></td>
<td>don.baker@allegion.com</td>
</tr>
</tbody>
</table>

The **PCR** peer review report is available upon request at epd@ulenvironment.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photocopying, recording, or otherwise without prior permission of UL.

UL provides this document "as is" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability or fitness for any purpose.

In no event will UL be liable for any special, incidental, consequential, indirect or similar damages, including loss of profits, lost savings, loss of data, or any other damages arising out of the use of or the inability to use this document, even if UL or an authorized UL representative has been advised of the possibility of such damage. In no event shall UL’s liability for any damage ever exceed the price paid for this document, regardless of the form of the claim.

Users of the electronic versions of UL’s documents agree to defend, indemnify, and hold UL harmless from and against any loss, expense, liability, damage, claim, or judgment (including reasonable attorney’s fees) resulting from any error or deviation introduced while purchaser is storing an electronic document on the purchaser’s computer system.

UL’s documents are copyrighted by UL. Neither a printed nor electronic copy of a document should be altered in any way. All of UL’s documents and all copyrights, ownerships, and rights regarding those documents shall remain the sole and exclusive property of UL.

COPYRIGHT © 2015 UNDERWRITERS LABORATORIES INC.
Table of Contents

Definitions .. 8
References .. 12
List of Abbreviations ... 15
List of Figures .. 16
List of Tables ... 16
Acknowledgements .. 17
1.0 Introduction to the PRODUCT CATEGORY RULES (PCR) .. 18
 1.1 Purpose of the PCR ... 18
 1.2 Scope of the PCR ... 18
 1.3 Period of Validity of the PCR .. 19
 1.4 Content of the PCR .. 19
 1.5 Harmonization .. 19
2.0 Rules for Completing the LCA and Background Report .. 21
 2.1 Rules for Completing the LIFE CYCLE ASSESSMENT .. 22
 2.1.1 Product Category Definition .. 22
 2.1.2 DECLARED UNIT/ FUNCTIONAL UNIT ... 22
 2.1.3 Product Description .. 23
 2.1.4 Product’s REFERENCE SERVICE LIFE (RSL) ... 24
 2.1.5 System Boundary ... 25
 2.1.5.1 Product Stage (includes Modules A1 through A3) .. 30
 2.1.5.2 Construction Process Stage (includes modules A4 and A5) .. 32
 2.1.5.3 Use Stage .. 32
 2.1.5.3.1 Use Stage Related to the Building Structure (modules B1 through B5) 33
 2.1.5.3.1.1 Use of the Installed Product (Module B1) ... 33
 2.1.5.3.1.2 Maintenance (Module B2) ... 34
 2.1.5.3.1.3 Repair (Module B3) .. 34
 2.1.5.3.1.4 Replacement (Module B4) ... 35
 2.1.5.3.1.5 Refurbishment (Module B5) ... 36
 2.1.5.3.2 B6-B7 Use Stage ... 37
 2.1.5.3.2.1 Energy use to operate INTEGRATED BUILDING TECHNICAL SYSTEMS (IBTS) (Module B6) ... 37
 2.1.5.3.2.2 Operational water use by building integrated technical systems (Module B7) 38
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.5.4 End-of-Life Stage (Modules C1 through C4)</td>
<td>38</td>
</tr>
<tr>
<td>2.1.5.5 Supplementary Information Beyond the Building Lifecycle (Module D)</td>
<td>40</td>
</tr>
<tr>
<td>2.1.5.6 Aggregation of INFORMATION MODULES</td>
<td>40</td>
</tr>
<tr>
<td>2.1.6 Cut-off Criteria</td>
<td>40</td>
</tr>
<tr>
<td>2.1.7 Data Quality Requirements</td>
<td>41</td>
</tr>
<tr>
<td>2.1.7.1 Period Under Consideration</td>
<td>41</td>
</tr>
<tr>
<td>2.1.7.2 Generic Data</td>
<td>41</td>
</tr>
<tr>
<td>2.1.7.3 Transport</td>
<td>42</td>
</tr>
<tr>
<td>2.1.7.4 Power Mixes</td>
<td>42</td>
</tr>
<tr>
<td>2.1.8 Units</td>
<td>42</td>
</tr>
<tr>
<td>2.1.9 Inventory Analysis</td>
<td>43</td>
</tr>
<tr>
<td>2.1.9.1 Data Collection</td>
<td>43</td>
</tr>
<tr>
<td>2.1.9.2 Calculation Procedures</td>
<td>43</td>
</tr>
<tr>
<td>2.1.9.3 Allocation Procedures</td>
<td>44</td>
</tr>
<tr>
<td>2.1.9.3.1 Allocation Procedure for CO-PRODUCTS</td>
<td>44</td>
</tr>
<tr>
<td>2.1.9.3.2 Allocation Procedure for Reuse, Recycling, and Recovery</td>
<td>45</td>
</tr>
<tr>
<td>2.1.10 Environmental Parameters derived from LCA</td>
<td>46</td>
</tr>
<tr>
<td>2.1.10.1 Parameters Describing Environmental Impacts</td>
<td>46</td>
</tr>
<tr>
<td>2.1.10.2 Parameters Describing Resource Use</td>
<td>49</td>
</tr>
<tr>
<td>2.1.10.3 Other Environmental Information Describing Different WASTE Categories and Output Flows</td>
<td>50</td>
</tr>
<tr>
<td>2.1.11 Additional Technical and Environmental Information</td>
<td>51</td>
</tr>
<tr>
<td>2.1.11.1 CO₂ Certificates</td>
<td>51</td>
</tr>
<tr>
<td>2.1.12 Ownership, Responsibility, and Liability for the EPD</td>
<td>51</td>
</tr>
<tr>
<td>2.1.13 Verification and Validity of an EPD</td>
<td>51</td>
</tr>
<tr>
<td>2.2 Rules for Creating the Background Report</td>
<td>52</td>
</tr>
<tr>
<td>2.2.1 The Content, Structure, and Accessibility of the LCA Background Report</td>
<td>52</td>
</tr>
<tr>
<td>2.2.2 General Information in the Background Report</td>
<td>52</td>
</tr>
<tr>
<td>2.2.3 Scope of the study</td>
<td>52</td>
</tr>
<tr>
<td>2.2.3.1 DECLARED/FUNCTIONAL UNIT</td>
<td>52</td>
</tr>
<tr>
<td>2.2.3.2 Description of the System Boundary</td>
<td>53</td>
</tr>
<tr>
<td>2.2.3.3 Explanation of Exclusion of Inputs and Outputs</td>
<td>53</td>
</tr>
<tr>
<td>2.2.4 Inventory Analysis</td>
<td>54</td>
</tr>
<tr>
<td>2.2.4.1 Description of UNIT PROCESSES</td>
<td>54</td>
</tr>
</tbody>
</table>
2.2.4.2 Description of Allocation Procedures ... 55
2.2.5 LIFE CYCLE IMPACT ASSESSMENT ... 55
2.2.6 Interpretation of the Results ... 55
2.2.7 Documentation of Additional Information ... 56
3.0 Content of the Environmental Product Declaration ... 56
 3.1 Content of the EPD .. 56
 3.1.1 Summary .. 56
 3.2 Product Description ... 58
 3.2.1 Product Characterization .. 58
 3.2.2 Application ... 58
 3.2.3 Technical Information ... 59
 3.2.4 Placing on the Market/ Application Rules ... 59
 3.2.5 Delivery Status .. 59
 3.2.6 Base Materials / ANCILLARY Materials ... 59
 3.2.7 Manufacture .. 60
 3.2.8 Environment and Health During Manufacturing ... 60
 3.2.9 Packaging ... 60
 3.2.10 Product Installation ... 60
 3.2.11 Condition of Use ... 60
 3.2.12 Environment and Health During Use ... 60
 3.2.13 REFERENCE SERVICE LIFE (RSL) ... 61
 3.2.14 Extraordinary effects (Optional) .. 61
 3.2.14.1 Fire ... 61
 3.2.14.2 Water .. 61
 3.2.15 Re-Use Stage .. 61
 3.2.16 Disposal .. 61
 3.2.17 Additional Information .. 62
 3.3 LIFE CYCLE ASSESSMENT ... 62
 3.3.1 DECLARED UNIT / FUNCTIONAL UNIT ... 62
 3.3.2 System Boundary ... 62
 3.3.3 Estimates and Assumptions ... 62
 3.3.4 Cut-off Criteria .. 62
 3.3.5 Background Data ... 62
 3.3.6 Data Quality .. 62
3.3.7 Period Under Consideration ..63
3.3.8 Allocation ..63
3.3.9 LCA Results..63
 3.3.9.1 Comparability of EPDs ..66
3.3.10 LIFE CYCLE ASSESSMENT Interpretation ...67
3.3.11 Other Required Evidence ..67
3.4 LCA Scenarios and Additional Technical Information ...68
3.5 References ..71
3.6 Verification ..71
Definitions

For the purposes of this document, the following terms and definitions are per ANSI/SDI A250.7, ISO 14040:2006, ISO 14044, 14025: 2006, ISO 21930 and EN 15804 apply.

ANCILLARY INPUT – input material or product that is used by a **UNIT PROCESS** during the life cycle of the **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** product, but which does not constitute part of the **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** product [adjusted from ISO 14040 and EN 15804].

AVERAGE DATA – data representative of a product, product group or construction service, provided by more than one supplier [EN 15804].

COMPARATIVE ASSERTION – environmental claim regarding the superiority or equivalence of one product versus a competing product that performs the same function [ISO 14044].

CO-PRODUCT – any of two or more products coming from the same **UNIT PROCESS** or **PRODUCT SYSTEM** [ISO 14044].

DECLARED UNIT – quantity of **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** product for use as a **REFERENCE UNIT** in an EPD for an environmental declaration based on one or more **INFORMATION MODULES** [EN 15804 adapted from ISO 21930]; See also **FUNCTIONAL UNIT**. The **DECLARED UNIT** is used where the **FUNCTIONAL UNIT** and the reference scenario for the whole life cycle, on the building level, cannot be stated.

DOMINANCE ANALYSIS – an analytical quantitative (such as statistical) or qualitative ranking technique (such as ABC analysis), by means of the relative significance of contributions are examined [adjusted from ISO 14044].

DUMMY – term used by US **LCI** database that refers to “empty” **LCI** data sets in technosphere processes.

ESTIMATED SERVICE LIFE (ESL) – The average **ESL** of a building in North America is defined to be 60 years.

FUNCTIONAL UNIT – quantified performance of a **PRODUCT SYSTEM** for a building product for use as a **REFERENCE UNIT** in an EPD based on **LCA** [ISO 21930 adapted from ISO 14040].
INFORMATION MODULE – compilation of data to be used as a basis for a TYPE III ENVIRONMENTAL DECLARATION covering a UNIT PROCESS or a combination of UNIT PROCESSES that are part of the life cycle of a product [ISO 14025].

INTEGRATED BUILDING TECHNICAL SYSTEM (IBTS) – comprise installed technical equipment supporting operation of a building. This includes technical building system for HVAC, lighting, domestic hot water and other system for sanitation, security, fire safety, internal transport and building automation and control and IT communication [EN 15804]. Some COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES products may be part of the security, fire-safety, and other aspects of IBTS.

LIFE CYCLE ASSESSMENT, LCA – compilation and evaluation of the inputs, outputs and the potential environmental impacts of a PRODUCT SYSTEM throughout its life cycle [ISO 14044].

LIFE CYCLE INVENTORY, LCI – phase of LIFE CYCLE ASSESSMENT involving the compilation and quantification of inputs and outputs for a product throughout its life cycle [ISO 14040].

LIFE CYCLE IMPACT ASSESSMENT, LCIA – phase of LIFE CYCLE ASSESSMENT aimed at understanding and evaluating the magnitude and significance of the potential environmental impacts for a PRODUCT SYSTEM throughout the life cycle of the product [ISO 14040].

NON-RENEWABLE ENERGY – energy from sources which are not defined as RENEWABLE energy sources [EN 15804]

NON-RENEWABLE RESOURCE – resource that exists in a finite amount that cannot be replenished on a human time scale [ISO 21930].

PCR REVIEW – process whereby a THIRD PARTY verifies the PRODUCT CATEGORY RULE [ISO 14025].

PRODUCT CATEGORY RULE, PCR – set of specific rules, requirements and guidelines for developing TYPE III ENVIRONMENTAL DECLARATIONS for one or more product categories [ISO 14025].

PRODUCT SYSTEM – collection of UNIT PROCESSES with elementary and product flows, performing one or more defined functions, and which models the life cycle of the product [ISO 14040]

PROGRAM OPERATOR – body or bodies that operate a TYPE III ENVIRONMENTAL DECLARATION program [ISO 14025].
Note: A PROGRAM OPERATOR can be a company or a group of companies, industrial sector or trade association, public authorities or agencies, or an independent scientific body or other organization.

REFERENCE UNIT – measure of the outputs from processes in a given PRODUCT SYSTEM required to fulfil the function expressed by the FUNCTIONAL UNIT [ISO 14044] over the ESL of the building or the RSL of the COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product.

Note: In ISO Standards, REFERENCE UNIT and REFERENCE FLOW are used interchangeably. In this PCR only REFERENCE UNIT is used.

REFERENCE SERVICE LIFE, RSL – service life of a COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product which is known to be expected under a particular set, i.e., a reference set, of in-use conditions and which may form the basis of estimating the service life under other in-use conditions [ISO 21930].

REFERENCE SERVICE LIFE DATA, RSL DATA – Information that includes the RSL and any qualitative or quantitative data describing the validity of the RSL. Example- typical data describing the validity of the RSL include the description of the component for which it applies [ISO 15686-8].

RENEWABLE ENERGY – energy from RENEWABLE non-fossil sources [EN 15804]. Examples: wind, solar, aerothermal, geothermal, hydrothermal and ocean energy, hydropower, biomass, landfill gas, sewage treatment plant gas and biogases.

RENEWABLE RESOURCE – Resource that is grown, naturally replenished or naturally cleansed, on a human time scale [ISO 21930].

Note: A RENEWABLE RESOURCE is capable of being exhausted, but may last indefinitely with proper stewardship. Examples include: trees in forests, grasses in grassland, fertile soil.

SECONDARY FUEL – fuel recovered from previous use or from WASTE, which substitutes primary fuels [EN 15804].

Note 1: Processes providing a SECONDARY FUEL are considered from the point where the SECONDARY FUEL enters the system from the previous system.

Note 2: Any combustible material recovered from previous use or from WASTE from the previous PRODUCT SYSTEM and used as fuel in a following system is a SECONDARY FUEL.
Note 3: Examples for primary fuels are: coal, natural gas, biomass, etc.

Note 4: Examples for SECONDARY FUELS recovered from previous use or as WASTE are: spent solvents, wood from demolition or forest slash or as bark or sawdust, tires, used motor or cooking oil, and animal fats.

SECONDARY MATERIAL – material recovered from previous use or from WASTE, which substitutes primary materials [EN 15804].

Note 1: SECONDARY MATERIAL is measured at the point where the SECONDARY MATERIAL enters the system from another system.

Note 2: Materials recovered from previous use or from WASTE from one PRODUCT SYSTEM and used as an input in another PRODUCT SYSTEM are SECONDARY MATERIALS.

Note 3: Examples for SECONDARY MATERIALS (to be measured at the system boundary) are recycled scrap metal, crushed concrete, glass cullet, recycled wood chips, recycled plastic.

THIRD PARTY – person or body that is recognized as being independent of the parties involved, as concerns the issues in question. Note:"parties involved" are usually supplier ("first party") and purchaser ("second party") interests [ISO 14024].

TYPE III ENVIRONMENTAL DECLARATION – Environmental declaration providing quantified environmental data using predetermined parameters and, where relevant, additional environmental information [EN 15804: adapted from ISO 14025].

Note: The calculation of predetermined parameters is based on the ISO 14040 series of standards, which is made up of ISO 14040, and ISO 14044. The selection of the predetermined parameters is based on ISO 21930.

UNIT - the set of the fewest COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES elements which comprise one complete COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product. More than one UNIT may be required in use, but less than one UNIT cannot perform the required function.

UNIT PROCESS – the smallest element considered in the LCI for which input and output data are quantified [ISO 14040].

WATER CONSUMPTION – water removed from but not returned to the same drainage basin
Note 1: **WATER CONSUMPTION** can be because of evaporation, transpiration, product integration or discharge into a different drainage basin or the sea. Evaporation from reservoirs can be included in **WATER CONSUMPTION** [ISO/DIS 14046].

Note 2 Refer to ISO 14046 for all terms relating to types and classifications of water and water footprint assessment.

WASTE – substances or objects that the holder intends or is required to dispose of [ISO 14040].

References

1. **General Standards for STEEL DOORS AND FRAMES Products**
 - ANSI/SDI A250.4-2011 Test Procedure and Acceptance Criteria for Physical Endurance for Steel Doors, Frames and Frame Anchors
 - ANSI/UL 1784-2001 Air Leakage Test of Door Assemblies
 - ASTM E1332 Standard Classification for Rating Outdoor-Indoor Sound Attenuation
 - SDI 113-13 Standard Practice for Determining the Steady-State Thermal Transmittance of Steel Door and Frame Assemblies
2. General and Building Sector Specific ISO Standards and others for LCA, PCR and EPDs

ISO 14040: 2006 Environmental management -- Life cycle assessment -- Principles and framework

ISO 14044: 2006 Environmental management -- Life cycle assessment -- Requirements and guidelines

ISO 14025: 2006 Environmental labels and declarations -- Type III environmental declarations -- Principles and procedures

ISO/DIS 14046:2013, Environmental management- Water footprint- Principles, requirements and guidelines

ISO 15392:2008, Sustainability in building construction- General principles

ISO 15686-1:2011, Buildings and constructed assets- Service life planning- Part 1: General principles

ISO 15686-8:2008, Buildings and constructed assets- Service life planning Part 8: Reference service life and service life estimation

ISO 21930: 2007 Sustainability in building construction -- Environmental declaration of building products

EN 15804: 2012 Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products

3. Federal Standards and SOPs

CAA 112(r) Clean Air Act (U.S) (http://www.epa.gov/oem/docs/chem/caa112_rmp_factsheet.pdf)
PRODUCT CATEGORY RULE

Commercial Steel Doors and/or Steel Frames
UL 9005

According to ISO 14025

CERCLA Hazardous Substances (U.S)
(http://www.epa.gov/oem/content/hazsubs/cercsubs.htm)

EPCRA 313 Toxic Release Inventory Reporting (U.S)
(http://www.ecy.wa.gov/programs/environmental gestión/section313.html)

OSHA 1910.1200 Hazardous Communication Standard—Toxic and Hazardous Substances (U.S)

4. Relevant PCRs

Product Category Rules for Building-Related Products and Services, From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU): Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report, Sep 2011

PCR Guidance-Texts for Building-Related Products and Services, From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU), Part B: Requirements on the EPD for locks and fittings, July 2013

Institute Construction and Environment (IBU) e.V. 2012 Part B: Requirements on the EPD for Automatic Doors, Automatic Gates, and Revolving Door Systems

Institute Construction and Environment (IBU) e.V. 2012 Part B: Requirements on the EPD for Windows and Doors v1.1
Commercial Steel Doors and/or Steel Frames
UL 9005

According to ISO 14025

List of Abbreviations

For the purposes of this document, the following abbreviations are per ANSI/SDI A250.7, ISO 14040:2006, ISO 14044, 14025: 2006, ISO 21930 and EN 15804:

ADPE – Abiotic Depletion Potential for Non-Fossil Resources
ADPF – Abiotic Depletion Potential for Fossil Resources
ANSI – American National Standards Institute
AP – Acidification Potential of Soil and Water
ASTM – American Society for Testing and Materials
BH – Builders Hardware
CAA – Clean Air Act (U.S.)
CDM – Clean Development Mechanism
CERCLA – Comprehensive Environmental Response, Compensation, and Liability Act
CFR – Code of Federal Regulations
CPS – Construction Process Stage
CRU – Components for Reuse
DIS – Draft International Standard
EEE – Exported Electrical Energy
EET – Exported Thermal Energy
EN – European Standard
EP – Eutrophication Potential
EPA – Environmental Protection Agency
EPCRA – Emergency Planning and Community Right-to-Know Act
EPD – Environmental Product Declaration
FW – Net Consumption of Water
GWP – Global Warming Potential
HVAC – Heating, Ventilation, and Air Conditioning
IBTS – Integrated Building Technical System
HWD – Hazardous Waste Disposed
IBU – Institute Construction and Environment
ISO – International Organization for Standardization
LCA – Product Life Cycle Assessment
LCI – Life Cycle Inventory
LCIA – Life Cycle Impact Assessment
LEED – Leadership in Energy and Environmental Design
LHV – Lower Heating Value (net caloric value)
Commercial Steel Doors and/or Steel Frames
UL 9005

According to ISO 14025

MET – Materials for Energy Recovery
MFR – Materials for Recycling
MSDS – Material Safety Data Sheet
NHWD – Non-Hazardous Waste Disposed
NRSF – Use of Non-Renewable Secondary Fuel
ODP – Depletion Potential of the Stratospheric Ozone Layer
PCR – Product Category Rule
PENRE – Non-Renewable Primary Energy and Energy Carrier
PENRM – Non-Renewable Primary Energy as Material Utilization
PERE – Renewable Primary Energy as Energy Carrier
PERM – Renewable Primary Energy as Material Utilization
PERT – Total Use of Renewable Primary Energy Resources
PM – Particulate Matter
POCP – Formation Potential of Tropospheric Ozone
RSF – Use of Renewable Secondary Fuel
RSL – Reference Service Life
RWD – Radioactive Waste Disposed
SM – Use of Secondary Material
SDI – Steel Door Institute
VER – Verified Emission Reduction

List of Figures

Figure 1: Types of EPD with respect to Life Cycle Stages and Modules for COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES

List of Tables

Table 1: COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product EPD types
Table 2: Mandatory conversion factors
Table 3: Parameters describing environmental impacts
Table 4: LIFE CYCLE INVENTORY analysis indicators describing the use of resources
Table 5: LIFE CYCLE INVENTORY analysis indicators describing various WASTE categories

Table 6: LIFE CYCLE INVENTORY analysis indicators describing the output material flows

Table 7: THIRD PARTY verification

Table 8: Fire protection

Table 9: LCA results

Table 10 LCA scenarios and additional technical information

Acknowledgements

This draft PCR has been prepared with input from the following organizations:

- ASSA ABLOY
- Builders Hardware Manufacturers Association
- Steelcraft
- Steel Door Institute

The following members comprised the PCR Peer Review Panel:

- Aaron Smith, ASSA ABLOY
- Don Baker, Allegion
- Jamie Meil, ATHENA Sustainable Materials Institute
1.0 Introduction to the PRODUCT CATEGORY RULES (PCR)

1.1 Purpose of the PCR

The intended application of this PRODUCT CATEGORY RULE (PCR) document is to provide a common set of specific rules, requirements and guidelines for developing ISO 14025 conformance Type III Environmental Product Declarations (EPDs) for COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES produced for use in North America and to specify the underlying requirements of the LCA in conformance with ISO 14040 series of LCA standards. This information is intended to complement existing environmental impact metrics in LEED. For example, these PCR facilitate the creation of Environmental Product Declarations that will satisfy optional criteria within the LEED V.4.0 standard.

The primary users of this PCR will be the Steel Door Institute (SDI) and its member companies. Other North American or global manufacturers could use this PCR as well.

This PCR document does not address either the economic or social aspects of COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES.

1.2 Scope of the PCR

This PCR is valid for COMMERCIAL STEEL DOORS OR FRAMES AS WELL AS DOORS WITH FRAMES (frames for use with doors manufactured from wood, steel, or other materials) produced for use in North America. The Scope of this PCR includes products covered in ANSI/SDI A250.8-2003 (R2008).

Components such as hinges, exit devices, door controls, etc. are covered under the Builders Hardware PCR.

This PCR covers commercial steel doors and steel frames as defined by ANSI A250.8. UL Environment recognizes, under ISO 14025, PCRs are intended to be function/service specific as opposed to material specific. When forming the PCR committee, UL Environment reached out to other door associations in an effort to represent a broader range of materials in this PCR, intending to develop a comprehensive, material inclusive PCR for doors. However, no
other door material associations agreed to participate in the development of this PCR and so it has been limited to steel. UL Environment remains open to greater inclusion and harmonization efforts in the future.

1.3 Period of Validity of the PCR

This PCR is valid for a period of 5 (five) years from the date of the publication. This PCR may be revised sooner by the primary users identified in Section 1.1.

1.4 Content of the PCR

This PCR specifies the rules for the COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES PRODUCT CATEGORY as regards to:

- the calculation criteria for the LIFE CYCLE ASSESSMENT (LCA),
- the rules for the creation of a Background Report on the LCA, and
- the rules for the creation of the Environmental Product Declaration (EPD).

1.5 Harmonization

In developing this PCR, UL Environment took every effort to harmonize the PCR development work with existing PCRs for doors. The PCR development process, for instance, began with a search for existing valid PCRs on this particular product category. The following PCR documents from the German Institute for Construction and Environment (IBU) were valid and considered in the development of this PCR:

- Product Category Rules for Building-Related Products and Services, From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU): Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report, Sep 2011
- PCR Guidance-Texts for Building-Related Products and Services, From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU),

The IBU PCR was modified for North American circumstances for the following reasons:

- the IBU PCR strictly follows the EN 15804:2012 standard, developed by regulatory and policy organizations in the European Union and developed by European experts rightly
reflecting the interests, practices, and supply chain aspects in the EU. The PCR development team recognized the need for developing a separate PCR, compliant with ISO 14025 and ISO 21930, for **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** manufactured for use in North America;

- the IBU PCR requires applying European category-impact-characterization factors. Instead, the USA Environmental Protection Agency’s Tools for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) system of characterization factors shall be applied for North American **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES LCA** reports and EPDs;
- the IBU PCR requires applying European based background LCI data sources. Instead, data sources representative of North American circumstance and conditions (e.g., US LCI database, US EI database, etc.) shall be used for North American **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES LCA** reports and EPDs;
- the IBU PCR is based on European technical requirements and reference standards which are different from North American standards. As specified in Section 2, North American reference standards and technical requirements shall be used to describe the North American **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** products;
- the IBU PCR documents follow a specific structure. It consists of a generic IBU PCR Part A document applicable for all **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** products and a product specific IBU PCR Part B. This North American PCR adopts a different structure and is a standalone document;
- the IBU PCR follows European regulations for hazardous and toxic materials and substances. North American regulations are different from European. This North American **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES PCR** specifies hazardous and toxic materials and substances in accordance with regulations applicable in the North American countries for which the PCR is to be valid;

Despite the above variations, the PCR team adopted almost all LCA technical aspects of the IBU PCR, for instance -
- the modular approach,
- **PRODUCT SYSTEM** boundary,
- life cycle stages definition and processes,
- environmental parameters derived from LCA including parameters describing environmental impacts, parameters describing resource use, and parameters describing different **WASTE** categories and output flows,
– additional technical information for the optional “construction, use and end-of-life” life cycle stages,
– additional environmental information during the use stage which is not covered by the LCIA,
– allocation rules,
– the EPD content template, etc.

in order to develop this North American COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES PCR and maintain a comparable level of harmonization.

2.0 Rules for Completing the LCA and Background Report

A LIFE CYCLE ASSESSMENT (LCA), LIFE CYCLE INVENTORY (LCI) and/or INFORMATION MODULES, complying with ISO 14040/14044, describing the COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES and based on transparent and credible data, must be presented in the Background Report to support the EPD. Additionally, model assumptions with a significant influence on the declared results must be clearly stated in the Background Report and the EPD.

The LCA Background Report shall be made available to the verifier with the requirements on confidentiality stated in ISO 14025. The Background Report is not part of the public communication.

The life-cycle stages which are taken into account in the Assessment must be thoroughly presented in relation to the considered processes. The Product Stage must always be thoroughly presented. Construction Process, Use, and End-of Life Stages are defined as optional. If included, assumptions and key parameters considered in these optional stages must be clearly stated.

COMPARATIVE ASSERTIONS with other products are inadmissible. The Background Report and EPD structures shall comply with the structure specified in Section 2.2 of this document.

[21]
2.1 Rules for Completing the LIFE CYCLE ASSESSMENT

2.1.1 Product Category Definition

COMMERCIAL STEEL DOORS AND STEEL FRAMES PRODUCT CATEGORY encompasses commercial doors and frames manufactured from steel. These products, in combination with builders hardware, are used to provide access to a building.

2.1.2 DECLARED UNIT/ FUNCTIONAL UNIT

The declared unit is defined as:

A. One commercial steel door of nominal dimensions of 3-feet by 7-feet considered in isolation.

OR

B. One commercial steel door of nominal dimensions of 3-feet by 7-feet used in conjunction with one three-sided steel frame that can fit a door with nominal dimensions of 3-feet by 7-feet.

OR

C. One commercial three-sided steel frame that can fit a door with nominal dimension of 3-feet by 7-feet.

- For A and B, a scaling factor based on one square foot of commercial steel door shall be provided
- For B and C, a scaling factor based on one linear foot of steel frame shall be provided
- Doors with dimensions other than 3-feet by 7-feet may be reported
- Frames capable of supporting dimensions other than 3-feet by 7-feet may be reported

Builders hardware such as hinges or exit devices shall not be included. The COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES shall conform to ANSI/SDI A250.8-2003 (R2008) and include a prime painted finish per ANSI A250.10.
The Background Report and EPD must clearly state whether both door and frame are included in the declared unit or if the analysis is for the frame only.

The REFERENCE UNIT is the total mass of material in one declared unit. The declared unit and the mass reference in kg must be indicated.

As required in ISO 21930, Clause 6.2.3, information provided using a DECLARED UNIT shall not be used for purposes of comparing COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES EPDs. To make such comparisons between EPDs, a FUNCTIONAL UNIT must be defined and a “cradle to grave” LCA of COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES must be conducted.

A DECLARED UNIT is used instead of a FUNCTIONAL UNIT when the precise function of the product or scenario(s) at the building level is not stated or is unknown [EN 15804] throughout the cradle-to-grave life cycle. A DECLARED UNIT provides a reference by means of which the material flows of the INFORMATION MODULES of COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES are normalized (in a mathematical sense) to produce data, expressed on a common basis [ISO 21930, EN 15804], to one unit.

Based on ISO 14044, a PRODUCT SYSTEM may fulfil a number of possible functions and the one(s) selected for a LCA study depend(s) on the goal and scope of the LCA.

For a particular LCA, not all functions may be relevant and the relevant ones must be identified. The FUNCTIONAL UNIT quantifies the performance characteristics of the identified functions of the COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES, for use as a REFERENCE UNIT (Reference Unit) in an EPD.

If the FUNCTIONAL UNIT covers only one function, and additional functions are not taken into account then these omissions shall be explained and documented.

For purposes of defining the FUNCTIONAL UNIT and the REFERENCE UNIT, an average ESTIMATED SERVICE LIFE (ESL) of a building in North America of 60 years shall be applied.

2.1.3 Product Description

The product to be assessed shall be described in reference to its technical and functional properties and its application ranges.
The LCA can be conducted for either an average or a specific product (e.g. a representative product with the greatest environmental impact). In the case where an LCA is calculated as average environmental performance for product a statement to that effect shall be included in the Background Report together with a description of the range and variability of the LIFE CYCLE IMPACT ASSESSMENT (LCIA) results. For products produced in multiple locations, the locations of the factories/plants shall be reported in the Background Report.

The Product Description must clearly state if the product is:
- A specific product from a specific factory/plant of a manufacturer,
- A specific product as an average from several of the manufacturer’s plants,
- An average product from a manufacturer’s specific plant,
- An average product as an average from several of the manufacturer’s plants,
- A specific product as an average from the plants of more than one manufacturer,
- An average product as an average from the plants of more than one manufacturer.

The EPD shall provide a narrative description of the COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES in a manner that enables the user to clearly identify the product. As defined in Section 3.2, this description will include:
- Product description
- Designated application of the product
- Product data
- Product dimensions
- Technical data
- Placing on the market / Application rules
- Product composition
- Manufacturing
- Environment and health during manufacturing
- Packaging
- Product installation
- Environment and health during use stage
- REFERENCE SERVICE LIFE
- End-of-Life
- Further information (optional)

2.1.4 Product REFERENCE SERVICE LIFE (RSL)
The reference service life of a COMMERCIAL STEEL DOOR AND/OR A STEEL DOOR FRAME depends on the type of product, its application, the user, and required maintenance of the product.

The RSL shall only be specified by the manufacturer for “Cradle-to-building with Use Stage (Option 3)” and “Cradle-to-grave” type of EPDs (see Table 1). The reference service life of a product must be clearly stated in both the Background Report and the EPD and all assumptions in regard to the RSL calculations shall be documented and justified.

For the purposes of this PCR, the RSL of a steel door shall be considered equal to that of a steel frame if both door and frame are included in the declared unit. If the RSL of the product exceeds building ESL of 60 years, one product will still be required to fulfill the declared or functional unit and the replacement factors is considered to be 1.

2.1.5 System Boundary

LCA is conducted by means of models describing the environmental impacts of elements of the PRODUCT SYSTEMS throughout the life cycle of the product to be assessed, from raw material supply and manufacturing through use and disposal. The System Boundary for the product is broken into the Stages of Manufacturing, which includes extraction and processing of resources; Construction Process; Use, which includes periodic maintenance and replacement and effects on the building’s energy performance; and End of Life, which includes separation from the building and final disposition of the product (see Figure 1).

The System Boundary determines which UNIT PROCESSES are included in the LCA of a PRODUCT SYSTEM, and which are not. PRODUCT SYSTEMS are sets of UNIT PROCESSES and intermediate flows within the System Boundary, together with energy and material (or product) flows into and out of the System Boundary. This section specifies the boundary of the PRODUCT SYSTEM for which LCA is to be reported and, in particular, the boundary that interfaces with other PRODUCT SYSTEMS in the life of a building. It also specifies the processes that are to be included in each of the life cycle stages as listed below.

The LCA is organized into Modules that allow easier preparation of data throughout the life cycle of the product. This approach requires that the system boundary for the life cycle stages and the INFORMATION MODULES included be transparent, well defined, and applicable to any COMMERCIAL STEEL DOOR AND/OR STEEL FRAME.
For the purposes of creating EPDs from this PCR, the following life cycle Stages and INFORMATION MODULES are considered:

- A1 through A3 Product Stage
- A4 through A5 Construction Process Stage
- B1 through B7 Use Stage
- C1 through C4 End-of Life Stage

Only the declaration of the Product Stage modules, A1 to A3, is required for compliance with this PCR.

If Use Stage reporting is chosen, (see Table 1), INFORMATION MODULES B1-B5 shall be reported for all products.

Additionally, if both steel door and steel frame are included in the declared unit, Operational Energy Use Stage INFORMATION MODULE B6 shall be reported.
Commercial Steel Doors and/or Steel Frames
UL 9005

According to ISO 14025
Figure 1: Types of EPD with respect to Life Cycle Stages and Modules for COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES

<table>
<thead>
<tr>
<th>BUILDING ASSESSMENT INFORMATION</th>
<th>BUILDING LIFE CYCLE INFORMATION</th>
<th>SUPPLEMENTARY INFORMATION BEYOND THE BUILDING LIFE CYCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCT stage</td>
<td>CONSTRUCTION PROCESS stage</td>
<td>Benefits and loads beyond the system boundary</td>
</tr>
<tr>
<td>Raw material supply</td>
<td>Manufacturing</td>
<td>Reuse-Recycling-Recovering-potential</td>
</tr>
<tr>
<td>Transport</td>
<td>Construction-installation process</td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Repair</td>
<td>Replacement</td>
<td></td>
</tr>
<tr>
<td>Refurbishment</td>
<td>De-construction demolition</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>WASTE processing</td>
<td></td>
</tr>
<tr>
<td>Disposal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPD

<table>
<thead>
<tr>
<th>Cradle to gate DECLARED UNIT FUNCTIONAL UNIT</th>
<th>Mandatory</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cradle to gate with option DECLARED UNIT FUNCTIONAL UNIT</td>
<td>Mandatory</td>
<td>Optional</td>
</tr>
<tr>
<td>Cradle to grave FUNCTIONAL UNIT</td>
<td>Mandatory</td>
<td>Optional</td>
</tr>
</tbody>
</table>

1) Inclusion for a declared scenario
2) If all scenarios are given

1 EN15804: 2012 - Sustainability of construction works – Environmental Product Declarations – core rules for the product category of construction products.
Table 1

COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES EPD types

<table>
<thead>
<tr>
<th>EPD type</th>
<th>DECLARED UNIT (DU) or FUNCTIONAL UNIT (FU)</th>
<th>Life Cycle Stages and modules</th>
<th>RSL</th>
<th>Primary audience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cradle to shipping gate</td>
<td>DU</td>
<td>Product stage; modules A1 to A3</td>
<td>Not specified</td>
<td>Business-to-business (B to B)</td>
</tr>
<tr>
<td>Cradle to building- (Option 1)</td>
<td>DU</td>
<td>Product and construction stages; modules A1 to A5</td>
<td>Not specified</td>
<td>Business-to-business (B to B)</td>
</tr>
<tr>
<td>Cradle to building- with EOL stage (Option 2)</td>
<td>DU</td>
<td>Product, construction and EOL stages; modules A1 to A5 and C1 to C4</td>
<td>Not specified</td>
<td>Business-to-business (B to B)</td>
</tr>
<tr>
<td>Cradle to building- with use stage (Option 3)</td>
<td>FU</td>
<td>Product, construction and use stages; modules A1 to A5 and B1 to B6</td>
<td>RSL is required</td>
<td>Business-to-business (B to B)</td>
</tr>
<tr>
<td>Cradle to grave</td>
<td>FU</td>
<td>Product, construction, use and EOL stages; modules A1 to C4</td>
<td>RSL is required</td>
<td>Business to business (B to B) and/or Business to consumer (B to C)</td>
</tr>
</tbody>
</table>

Note: INFORMATION MODULE D may be included in the option 2, 3, and cradle-to-grave EPDs

The setting of the system boundary follows two principles:

− The “modularity principle”: Where processes influence the product’s environmental performance during its life cycle, they shall be assigned to the module of the life cycle where they occur; all environmental aspects and impacts are declared in the life cycle stage where they occur;

− The “polluter pays principle”: Processes of WASTE processing shall be assigned to the PRODUCT SYSTEM that generates the WASTE until the “end-of-WASTE”² state is reached.

The omission(s) of significant environmental aspects or life-cycle stages shall be justified and documented.

2.1.5.1 Product Stage (includes Modules A1 through A3)

Product Stage includes the provision of all materials, products, and energy and includes WASTE processing or disposal of final residues during the product stage. However, production of capital goods, infrastructure, production of manufacturing equipment and personnel-related activities are not included. HVAC (heating, ventilation, and air conditioning), artificial lighting and transport within the Manufacturing site will only be considered if they do not meet the cut-off criteria, meaning impacts from on-site transport, electricity used for overhead, etc. will not be considered unless they exceed cut-off contribution limits of 1% per module. (see Section 2.1.6).

The Product Stage will account for:

- A1 Extraction and processing of raw materials (e.g. mining and refining processes) and biomass production and processing (e.g. agricultural or forestry operations);
- A1 Reuse of products or materials from a previous PRODUCT SYSTEM (i.e. recycled steel);
- A1 Processing of SECONDARY MATERIALS used as input for manufacturing the product, but not including those processes that are part of the WASTE processing in the previous PRODUCT SYSTEM;
- A1 Generation of electricity, steam and heat from primary energy resources, also including their extraction, refining and transport;
- A1 Energy recovery and other recovery processes from SECONDARY FUELS, but not including those processes that are part of WASTE processing in the previous PRODUCT SYSTEM;
- A2 Transportation up to the factory gate and internal transport;
- A3 Production of ANCILLARY materials or pre-products (i.e. lubricants);
- A3 Manufacturing of products and CO-PRODUCTS;
- A3 Manufacturing of packaging;
- A1-A3 WASTE processing or disposal, including any packaging WASTE.

For the Product Stage the boundary is set from raw materials acquisition through to production and the delivery of the finished product ready for dispatch (factory gate). The
assessmentscope including all processes both considered and neglected shall be described appropriately, and is preferably presented as a flow diagram.

In the case of input of SECONDARY MATERIALS, or energy recovered from SECONDARY FUELS, the System Boundary between the system under study and the previous system (that is, the source of the SECONDARY MATERIALS) is set where outputs of the previous system reach the end-of-WASTE stage. In the case of outputs, flows leaving the system at the end-of-WASTE boundary of the Product Stage (A1-A3) shall be allocated as they are allocated to CO-PRODUCTS.

The flows leaving the system at the A1-A3 boundary are determined as follows, and loads and benefits from allocated CO-PRODUCTS shall not be declared in Module D:

- Production WASTE whose materials are recycled without any modification of the features inherent to the materials (i.e. closed-loop or open-loop) can be considered as recycled within Modules A1-A3 to the maximum volume used in production. A CO-PRODUCT allocation is necessary for production WASTE exceeding the volumes used in Modules A1-A3.
- CO-PRODUCT allocation is necessary for production WASTE whose materials are reused anywhere other than in the PRODUCT SYSTEM (open-loop).
- Heat and power from energy recovery of production WASTE in Modules A1-A3 can be considered closed-loop within Module A1-A3 if they are used within Modules A1-A3 and only to the maximum amount in MJ as is required. A CO-PRODUCT allocation is necessary for energy surpluses exceeding the volumes considered closed-loop.

If an allocation procedure different from CO-PRODUCT allocation is chosen for flows that reach the system at the boundary A1-A3, this procedure shall be in conformance with ISO 14044:2006 and has to be justified. The resulting material and energy flows are to be described transparently in the background report with regard to the amounts of materials and energy within Module A1-A3.

Allocation associated with transport should be based on weight or volume, as appropriate for realistic modeling.

3 This PCR and the IBU PCR Part B Requirements on the EPD for locks and fittings, July 2013 comply with EN 15804, Clause 6.4.3 Allocation of input flows and output emissions. As stated in EN 15084, Clause 6.4.3.1, “In this standard, the rules for allocation are based on the guidance given in EN ISO 14044:2006, 4.3.4. However, the basic procedures and assumptions used in EN ISO 14044 have been refined in order to reflect the goal and scope of this standard and EN 15643-2.”
2.1.5.2 Construction Process Stage (includes modules A4 and A5)

Modules A4 and A5 are optional and the construction stage will report:

- A4: Transport to the building site
- A5: Installation into the building

Construction Process Stage (CPS) includes provision of all materials, products and energy, and waste processing or disposal of final residues during the CPS. Also included are all impacts related to any losses of product during this CPS (i.e., the production, transport, and waste processing or disposal of the lost products and materials).

The CPS includes information modules for:

- A4 Transportation from the manufacturing gate to the construction site
- A4 & A5 Storage of products, including the provision of heating, cooling, humidity control etc.
- A4 & A5 The waste of product that occurs at the construction site when there is improper installation and the component or product is discarded
- A4 & A5 Waste processing from product packaging and wastage of product during the CPS, up to the end-of-waste state or disposal of final residues
- A5 Installation of the product in the building including manufacture and transportation of ancillary materials and any energy or water required for installation or operation of the construction site.
This module also includes on-site operations to the product.

2.1.5.3 Use Stage

The Use Stage includes the use of construction products, equipment, and services in their proper function. It also includes maintenance (including cleaning), repair, replacement, and refurbishment.
Use Stage also includes their use for protecting, conserving, moderating, or controlling a building, e.g. modules describing the building operation through building-related services.
such as heating, cooling, lighting, water supply and internal transport (provided, e.g., by elevators and escalators). It also includes maintenance (including cleaning), repair, replacement, and refurbishment.

It may be difficult to separate all Use-Stage processes and the connected aspects and impacts into the optional individual Modules B1-B5 and B6-B7 listed below. Any deviation from the listed categorization of aspects and impacts into modules B1-B5 and B6-B7 shall be transparently reported and justified.

2.1.5.3.1 Use Stage Related to the Building Structure (modules B1 through B5)

When incorporating use stage of the product in the building structure, INFORMATION MODULES B1 through B5 shall be optional.

- B1: Use of the installed product
- B2: Maintenance
- B3: Repair
- B4: Replacement
- B5: Refurbishment

The RSL of COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES depends on the type of product, its application, the user, and required maintenance of the product. For this purpose, the Use Stage impacts shall be reported in accordance with the RSL of the product as per Section 2.1.4.

2.1.5.3.1.1 Use of the Installed Product (Module B1)

The Product’s RSL as defined in Section 2.1.4 shall be used.

This “Use of the installed product”, Module B1, covers environmental impacts and aspects that are not covered by Modules B2-B7 and that arise from the product installed in the building during its normal (i.e. anticipated) use.

It is expected that COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES will have no impact in terms of any emissions to environment according to this Module B1; door and frame impact on building energy use (e.g. HVAC) is covered in Module B6.
2.1.5.3.1.2 Maintenance (Module B2)

The "Maintenance" Module covers the combination of all prescribed technical and associated administrative activities required in order to maintain the product installed in a building, construction works, or components in such a way that its requisite functional and technical performance as well as the aesthetic qualities are retained. This includes preventive and regular maintenance activities such as cleaning, prescribed technical service. Due to the highly variable nature of painting applications (powder coat, lead-based, epoxy, etc.), painting and repainting are explicitly excluded from the maintenance module scope. Water and energy usage required for cleaning as part of maintenance measures, for example, must be considered in this Module.

The "Maintenance" boundary shall include in addition:

- The production and transportation of any component or ANCILLARY product used for maintenance, including cleaning
- Transportation of any WASTE from maintenance processes or from maintenance related transportation
- The end-of-life processes of any WASTE from transportation and the maintenance process, including any part of the component and ANCILLARY materials removed

Required or expected maintenance are to be modeled according to manufacturer’s guidelines. Assumptions and key parameters must be clearly stated and the manufacturer is to submit supporting documentation to justify the assumptions made.

2.1.5.3.1.3 Repair (Module B3)

The module “repair” covers a combination of all technical and associated administrative actions during the service life associated with corrective, responsive, or reactive treatment of a COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES installed in the building or construction works to return it to an acceptable condition in which it can perform its required functional and technical performance. It also covers the preservation of the aesthetic qualities of the product. Replacement of a broken component or part due to damage should be assigned to “repair”, whereas replacement of a whole element due to damage should be assigned to the module "replacement" [EN 15804].
The boundary for "Repair" must include:

- Repair processes of the repaired part of a component including:
 - the production of the repaired part of a component and of **ANCILLARY** materials
 - use of related energy and water
 - the production and transport aspects and impacts of any wastage of materials during the repair process
- The transportation of the repaired part of component and **ANCILLARY** materials, including aspects and impacts of any wastage of materials during repair-related transportation
- The-end-of-life processes of any **WASTE** from transportation and the repair process, including the part of the component and **ANCILLARY** materials removed

2.1.5.3.1.4 Replacement (Module B4)

The module "Replacement" covers the combination of all technical and associated administrative actions during the service life associated with the return of **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** product to a condition in which it can perform its required functional or technical performance, by replacement of a whole **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** product that has reached the end of its RSL. Replacement of a broken component or part due to damage should be included as "Repair", but replacement of a whole **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** product due to damage should also be considered as "Replacement". Replacement of a whole **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** product as part of a concerted replacement program for the building should be considered as "Refurbishment" [EN 15804].

The boundary for "Replacement" must include:

- Production of the components and **ANCILLARY** materials used for replacement
- Replacement process, including related water and energy use and the production aspects and impacts of any **WASTE** of materials used during the replacement processes
- Transportation of the components and **ANCILLARY** materials used for replacement, including the aspects and impacts of any **WASTE** of materials during transportation
- End-of-life processes of any **WASTE** from transportation and the replacement processes, including the components and **ANCILLARY** materials removed
The number of replacements of product expected during the ESL of the building of 60 years shall be declared. Required or expected maintenance are to be modeled according to manufacturer’s guidelines. Assumptions and key parameters must be clearly stated and the manufacturer is to submit supporting documentation to justify the assumptions made.

If the REFERENCE SERVICE LIFE (RSL) of COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES is less than the ESTIMATED SERVICE LIFE (ESL) of a building in North America, the number of replacements that will be necessary to fulfill the required performance and functionality over the building ESL shall be identified. The combined impacts of the original product and any replacements shall be determined by dividing the building ESTIMATED SERVICE LIFE (ESL) (60 years) by the RSL of the product, and the impacts multiplied by the factor.

If applicable, for a fractional remainder of a replacement cycle, the total impacts of the product's manufacturing, installation, deconstruction, etc. should be multiplied by the fraction of RSL that the expected life of the product comprises.

2.1.5.3.1.5 Refurbishment (Module B5)

The module “refurbishment” covers the combination of all technical and associated administrative actions during the service life of a product associated with the return of a building or other construction works or their parts to a condition in which it can perform its required functions. These activities cover a concerted program of maintenance, repair and/or replacement activity, across a significant part or whole section of the building.

Restoration activities should be included within refurbishment.

The boundary for “Refurbishment” must include:

- Production of the components and ANCILLARY materials used for “Refurbishment”
- Refurbishment processes and related water and energy use including production aspects and impacts of any WASTE of materials used during the refurbishment processes

4 Example: If a product lasts 25 years within a 60 year ESL of a building, then the full impacts should be counted for the first two life cycles. For the replacement, the full impacts of the third life cycle should be divided over the remaining life required to service the building. (10/25 or 40% of the total)
Transportation of the components and ANCILLARY materials used for refurbishment, including production aspects and impacts of any WASTE during transportation.

End-of-life processes of any wastage from transportation and the refurbishment processes, including the components and ANCILLARY materials removed.

2.1.5.3.2 B6-B7 Use Stage

2.1.5.3.2.1 Energy use to operate INTEGRATED BUILDING TECHNICAL SYSTEMS (IBTS) (Module B6)

As defined in Section 1.2, the scope of this PCR covers COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES which are part of IBTS.

The boundary of the module “Energy use to operate IBTS” shall include building operational energy use during the use of the product, and its associated environmental aspects and impacts including processing and transportation of any WASTE arising on-site from the use of energy.

Aspects related to the production, transportation and installation of equipment required to supply energy to the building shall be assigned to Modules A1-A5. Energy use during maintenance, repair, replacement, or refurbishment activities for the equipment shall be assigned to Modules B2-B5. Aspects related to the WASTE processing and final disposal of equipment shall be assigned to Modules C1-C4 [EN 15804].

Operational Energy Use Stage B6 shall be reported for declared products that include both the door and the frame; it is not applicable to declared products that include only the frame.

Doors and door frames, in most cases, do not directly consume any energy. However, the performance of a door and frame will affect the energy consumed by the HVAC (heating and cooling) system in the building. To address this, the use stage energy calculations in this PCR are based on the amount of heat gain, heat loss, and air leakage associated with a door and frame product system. This is a different approach from other building envelope materials such as wall insulation, sheathing, or roofing materials. Because of this inclusion of heat loss, heat gain, and air leakage, the environmental impacts and energy associated with doors and frames shall not be compared to other building envelope products.
The framework for calculation of building operational energy consumption attributable to the door and frame is presented in Appendix A.

Note that the framework provides additional steps for calculating the time to recover (in days) the Primary Energy Demand (PED) associated with the manufacturing of the door (A1 to A3) with set thermal resistance (R-Value) compared to a pre-defined baseline door (Uninsulated door). Recovery time is calculated based on upfront energy spent to manufacture the door, versus energy savings realized during use of an insulated door compared to the uninsulated baseline. PED recovery time, if calculated, shall be reported under the Section 3.2.17 “Additional Information” of the EPD and not in Module B6.

2.1.5.3.2.2 Operational water use by building integrated technical systems (Module B7)

This Module is not anticipated to be a part of the LCA calculation for the Use Stage for any COMMERCIAL STEEL DOOR AND/OR FRAME products within the scope of this PCR. For consistency with EN 15804 Module B7 is included as an optional reporting Module and shown in Fig. 1.

The module B7 shall include water use during the operation of the IBTS, together with its associated environmental aspects and impacts considering the life cycle of water including production and transportation and WASTewater treatment [EN 15804, Clause 6.3.4.4.3]. This PCR defines that COMMERCIAL STEEL DOOR AND/OR FRAME products have no impact on the operational water use by IBTS during the 60 year ESL of a building in North America.

2.1.5.4 End-of-Life Stage (Modules C1 through C4)

The end-of-life stage of COMMERCIAL STEEL DOOR AND/OR FRAME product starts when it is removed, dismantled, or deconstructed from the building and does not provide any further function. It can also start at the end-of-life of the building, depending on the choice of the product’s end-of-life scenario. The choice of the WASTE management methods shall be based on the state of the art and the WASTE management methods chosen shall be documented in the Background Report.

During the end-of-life stage of the product or of the building, all output from dismantling, deconstruction or demolition of the building; or of the maintenance, repair, replacement or refurbishing processes; all debris, construction products, materials or products etc. leaving the building, are at first considered as WASTE.
This output however reaches the end-of-WASTE state when it complies with all of the following conditions:

− The material or product reclaimed from the WASTE is commonly used for specific purposes.
− A market or demand, identified by a positive economic value, exists for such a reclaimed material or product.
− The reclaimed material or product fulfills the technical requirements for the specific purposes and meets applicable legislation and standards.
− The reclaimed material or product shall not lead to overall adverse environmental or human health impacts in use.

When incorporating an End-of-Life scenario, modules C1 through C4 shall be included.

End-of-Life Stage includes:

− C1: Deconstruction, dismantling, or demolition of the product from the building, including initial on-site sorting of the materials
− C2: Transportation of the removed product as part of WASTE processing, e.g. to a recycling site, and transportation of WASTE, e.g., to final disposal
− C3: WASTE processing for reuse, recycling, energy recovery, and/or reclamation.\(^5\) WASTE processing shall be modeled and the elementary flows shall be included in the inventory.
− C4: WASTE disposal including physical pre-treatment and management of the disposal site including provision and transport of all materials, products, and energy and water used during the end-of-life stage.

Environmental loads (e.g., emissions) from WASTE disposal in Module C4 are considered part of the PRODUCT SYSTEM under review, according to the “polluter pays principle”. If however, this process generates energy such as heat and power from WASTE incineration or landfill gas, the potential benefits from utilization of such energy in the next PRODUCT SYSTEM are assigned to Module D and calculated using current average substitution methods.

\(^5\) E.g., collection of waste fractions from demolition, and waste processing of material flows intended for reuse, reclamation, and energy recovery.
2.1.5.5 Supplementary Information Beyond the Building Lifecycle (Module D)

INFORMATION MODULE D aims at transparency regarding the environmental benefits or loads resulting from reusable products, recyclable materials, and/or useful energy carriers leaving a **PRODUCT SYSTEM**, e.g., as **SECONDARY MATERIALS** or **SECONDARY FUELS**.

Any declared benefits and loads from net flows leaving the **PRODUCT SYSTEM** that have not been allocated as **CO-PRODUCTS** and that have passed the end-of-**WASTE** state shall be included in Module D. Avoided impacts from allocated **CO-PRODUCTS** shall not be allocated to Module D. The information in Module D may contain technical information as well as the quantified predetermined parameters derived from the **LIFE CYCLE ASSESSMENT**.

2.1.5.6 Aggregation of INFORMATION MODULES

As per Section 7.5 of EN 15804, the indicators declared in the individual **INFORMATION MODULES** of a product life cycle A1 to A5, B1 to B7, C1 to C4 and module D as described in Figure 1 shall not be added up in any combination of the individual **INFORMATION MODULES** into a total or sub-total of the life cycle stages A, B, C or D. As an exception **INFORMATION MODULES** A1, A2, and A3 may be aggregated.

2.1.6 Cut-off Criteria

The following procedure shall be followed for the exclusion of inputs and outputs:
- All inputs and outputs to a **UNIT PROCESS** for which data are available shall be included in the calculation. Data gaps may be filled by conservative assumptions with average or generic data. Any assumptions concerning such value choices shall be documented.
- In cases of insufficient input data or data gaps for a **UNIT PROCESS**, the cut-off criteria shall be 1% of total primary energy usage and 1% of the total mass input of that **UNIT PROCESS**;
- The total of neglected input and output flows per each group module: A1-A3, A4-A5, B1-B5, B6-B7 and C1-C4 (see Figure 1) shall not exceed a maximum of 5% of energy usage, mass, or environmental impact category indicator covered by this **PCR** (see Table 9).
- Conservative assumptions in combination with plausibility considerations and expert judgments should be used to demonstrate compliance with these criteria.
All hazardous and toxic releases (emissions to air, water and/or land) which are mandatorily monitored and reported to the U.S TRI or Canadian NPRI on yearly basis shall be included in the inventory and the cut-off rules do not apply [ISO 21930]. The exclusion of any such releases shall be governed by the "threshold of significance" of the laws and regulations applicable in the jurisdiction(s) for which the LCA is to be valid. The list of included hazardous and toxic releases, and the applied regulations, shall be documented in the Background Report.

Furthermore, the owner of the EPD/LCA has to attest that no threshold of significance has been exceeded for any material the emission of which would otherwise need to be disclosed under applicable laws and regulations.

2.1.7 Data Quality Requirements

Data shall be as current as possible. Data sets used for calculations shall have been updated within the last 10 years for generic data and within the last 5 years for manufacturer-specific data.

The specific requirements (e.g. temporal, geographic, and technological quality) and handling of data gaps shall be documented according to ISO 14044. The representativeness of the data used shall be discussed. When data from comparable processes must be used to cover gaps, the technological similarity shall be documented. Handling of data gaps and the use of data models shall be explained.

Data quality requirements shall be treated according to the provisions of ISO 14025 and ISO 14044:2006, Section 4.2.3.6.

2.1.7.1 Period Under Consideration

Data sets shall be based on 1 year averaged data. The period under consideration for the LCA shall be documented. Deviations shall be justified.

2.1.7.2 Generic Data
As a matter of principle, consistent and equivalent generic data shall be used, such as for background processes to support comparability of results. Data sets taken from databases (i.e., sources that are not specific data from the manufacturer) shall be identified as such in the Background Report, including the source and the year at which the dataset was last updated or pre-verified. The representativeness of the datasets with respect to time, location, and technology shall be documented, and deviations from the actual time, location, and technology relevant to the product shall be disclosed.

2.1.7.3 Transport

Transportation distances and methods shall be documented, as far as they are relevant. In addition, the average hauling distance for the distribution chain in North America (gate to site) can be used.

2.1.7.4 Power Mixes

The following applies in selecting the power mix:

- For the United States, the sources for electricity used shall be based on published U.S. government sources for regional grids that are either self-sufficient or net exporters, if available. Site-specific data shall be used for electricity-grid-mix averages. If site-specific data are not available, regional averaged grid-mix values for major grids that are not connected (e.g. East, West, and Texas) shall be used. The sources for electricity and the calculation procedure shall be documented.

- For other regions than the United States, country-specific processes shall be used provided they are representative. For production facilities in several European countries, the applicable power mixes shall be assessed specifically for each country or combined, weighted by production volumes in the respective countries.

- If “green” power is used, certificates must be available for the entire period of EPD validity. If certificates cannot be provided for the full 5 years when issuing the EPD, the PROGRAM OPERATOR must request the certificates for the preceding 5 years in order to extend the Declaration.

2.1.8 Units

Table 2 summarizes the mandatory conversion factors to be used by the PCR users.

Table 2
Mandatory conversion factors

<table>
<thead>
<tr>
<th>Convert from (US units)</th>
<th>To (SI units)</th>
<th>Multiply by (3-significant digits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pound (lb)</td>
<td>Kilogram (kg)</td>
<td>0.454</td>
</tr>
<tr>
<td>British Thermal Unit (BTU)</td>
<td>Joule (J)</td>
<td>1060</td>
</tr>
<tr>
<td>Inches (in)</td>
<td>Millimeter (mm)</td>
<td>25.4</td>
</tr>
<tr>
<td>Foot (ft)</td>
<td>Meter (m)</td>
<td>0.305</td>
</tr>
<tr>
<td>Square foot (ft²)</td>
<td>Square meter (m²)</td>
<td>0.0929</td>
</tr>
<tr>
<td>Cubic foot (ft³)</td>
<td>Cubic meter (m³)</td>
<td>0.0283</td>
</tr>
<tr>
<td>Specific density (lb/ft³)</td>
<td>Specific density (kg/m³)</td>
<td>4.88</td>
</tr>
<tr>
<td>Mile (mi.)</td>
<td>Kilometer (km)</td>
<td>1.61</td>
</tr>
</tbody>
</table>

2.1.9 Inventory Analysis

2.1.9.1 Data Collection

Data collection shall follow the instructions provided in ISO 14044:2006, section 4.3.2.

2.1.9.2 Calculation Procedures

The calculation procedures described in ISO 14044 shall apply. The same calculation procedures shall be applied consistently throughout the LCA study. When converting the inputs and outputs of combustible material into energy inputs and outputs, the net calorific value of fuels (Lower Heating Value, LHV) shall be applied according to scientifically based and accepted values specific to the combustible material.

The data collection and calculation procedures shall be documented in the Background Report.
2.1.9.3 Allocation Procedures

For many or most industrial processes more than one input is needed to produce Commercial Steel Doors and/or Steel Frames product and sometimes Commercial Steel Doors and/or Steel Frames. Products are co-produced with other products. As a rule, the material flows between them are not distributed in a simple way. When dealing with systems involving multiple products and recycling processes, allocation should be avoided as far as possible. Where unavoidable, allocation should be considered carefully and should be justified. The principles for allocation in the PCR are based on the guidance given in ISO 14044:2006, Section 4.3.4.

The chosen allocation approaches shall be clearly documented in the Background Report and consistently applied throughout the LIFE CYCLE ASSESSMENT. The principle of modularity shall be maintained. Where processes influence the product’s environmental performance during its life cycle, they shall be assigned to the Module in the life cycle where they occur. The sum of the allocated inputs and outputs of a UNIT PROCESS shall be equal to the inputs and outputs of the UNIT PROCESS before allocation. Double-counting or omission of inputs or outputs through allocation is not permitted.

2.1.9.3.1 Allocation Procedure for CO-PRODUCTS

Wherever possible, allocation should be avoided by dividing the UNIT PROCESS to be allocated into two or more sub-processes and collecting the input and output data related to these sub-processes.

Where allocation cannot be avoided, allocation procedures should be carried out as follows [based on ISO 14044:2006, Clause 4.3.4.2]:

The study shall identify the processes shared with other PRODUCT SYSTEMS and deal with them according to the stepwise procedure presented below.

6 In industrial processes there may be a wide variety of different types of materials produced in conjunction with the intended product. In business vocabulary, these may be identified as by-products, co-products, intermediate products, non-core products or sub-products. In the PCR these terms are treated as being equivalent. However for the allocation of environmental aspects and impacts a distinction between co-products and products is made in the PCR.
a. Where allocation cannot be avoided, the inputs and outputs of the system should be partitioned between its different products or functions in a way that reflects the underlying physical relationships between them; i.e. they should reflect the way in which the inputs and outputs are changed by quantitative changes in the products or functions delivered by the system. In such a case, any physical parameter, e.g. mass, volume, length, feedstock energy, etc., could be taken into consideration in order to identify the physical parameter which reflects the underlying physical relationship between product and the other co-products.

b. Where physical relationship alone cannot be established or used as the basis for allocation, the inputs should be allocated between the products and functions in a way that reflects other relationships between them. For example, input and output data might be allocated between co-products in proportion to the economic value of the products.

Some outputs may be partly co-products and partly disposed waste. In such cases, it is necessary to identify the ratio between co-products and disposed waste since the inputs and outputs shall be allocated to the co-products part only.

This PCR defines “physical allocation”, such as by mass, as the default allocation procedure for the commercial steel doors and/or steel frames product in Module A-3.

2.1.9.3.2 Allocation Procedure for Reuse, Recycling, and Recovery

The End-of-Life System Boundary of the product is set where outputs of the system under study have reached the end-of-waste state. Therefore, waste processing of the material flows (e.g. recycling) during any module of the product system (e.g., during the product stage) is included up to the system boundary of that module.

Module D declares potential loads and benefits of secondary material, secondary fuel, or recovered energy that leaves the System Boundary. Module D recognises the reuse, recycling, and recovery concept by detailing the potential benefits of the avoided future use of primary materials and fuels while taking into account the loads associated with the recycling and recovery processes beyond the System Boundary.

Where a secondary material or fuel crosses the System Boundary (e.g., if it substitutes for another material or fuel in a following product system), the potential benefits or avoided
In module D the net impacts are calculated as follows:

1. by adding all output flows of a SECONDARY MATERIAL or FUEL and subtracting all input flows of this SECONDARY MATERIAL or FUEL from each sub-module first (e.g. B1-B5, C1-C4, etc.), then from the modules (e.g. B, C), and finally from the total PRODUCT SYSTEM thus arriving at net output flows of SECONDARY MATERIAL or FUEL from the PRODUCT SYSTEM;

2. by adding the impacts connected to the recycling or recovery processes from beyond the system boundary (after the end-of-WASTE state) up to the point that the SECONDARY MATERIAL or energy may be substituted for primary production, and subtracting from primary sources the impacts avoided by the substituted production of the SECONDARY MATERIAL or the substituted generation of energy;

3. by applying a justified value-correction factor to reflect the difference in functional equivalence where the output flow does not reach the functional equivalence of the substituting process.

In module D substitution effects are calculated only for the resulting net output flow. The amount of SECONDARY MATERIAL output, which is for all practical purposes able to replace one to one the input of SECONDARY MATERIAL as closed loop, is allocated to the PRODUCT SYSTEM under study and not to module D.

Module D also contains the benefits of exported energy from WASTE disposal processes declared in module C4.

2.1.10 Environmental Parameters derived from LCA

In conformance with ISO 21930 and EN 15804, this PCR covers all required environmental impacts, use of resources, and generation of WASTE as specified in Clause 8.2.2, ISO 21930 and Clauses 7.2.2-7.2.5, EN 15804.

2.1.10.1 Parameters Describing Environmental Impacts

Characterization factors from the US EPA Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI 2.1 July 2012 impact categories) shall be used and impacts reported. Characterization factors taken from the University of Leiden.
(CML) methodology are optional additions for EPDs valid in North America but shall be used and impacts reported for EPDs valid outside of North America).

The following impact assessment indicators shall be calculated and assigned to the DECLARED or FUNCTIONAL UNIT:

- Global Warming Potential (GWP)
- Ozone Depletion Potential (ODP)
- Acidification Potential (AP)
- Eutrophication Potential (EP)
- Photochemical Ozone / Summer Smog Creation Potential (POCP)
- Abiotic Depletion Potential, ADP-fossil fuels

Optionally, information on further environmental impacts, e.g. abiotic resource depletion, ecotoxicity, human toxicity, land use, etc. can be given.

Apart from the results of the impact estimate, the following must also be stated in the Background Report:

- Reference to all characterization models, characterization factors and characterization methods used, such as those defined in Table 3 of this document or the corresponding from according to CML, and
- A statement that the impact-estimate results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks.
Table 3
Parameters describing environmental impacts

<table>
<thead>
<tr>
<th>Impact category</th>
<th>Parameter</th>
<th>Unit (per FU or DU)</th>
<th>Source of the characterization method</th>
<th>Level of site specificity selected</th>
<th>Environmental media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change<sup>1,2</sup></td>
<td>Global warming potential, GWP</td>
<td>kg CO₂ – equiv.</td>
<td>TRACI 2.1, July 2012 /IPCC 2007</td>
<td>Global</td>
<td>Air</td>
</tr>
<tr>
<td>Ozone depletion<sup>1,2</sup></td>
<td>Depletion potential of the stratospheric ozone layer, ODP</td>
<td>kg CFC-11 equiv.</td>
<td>TRACI 2.1, July 2012/WMO:2003</td>
<td>Global</td>
<td>Air</td>
</tr>
<tr>
<td>Acidification<sup>1,2</sup></td>
<td>Acidification potential, AP</td>
<td>kg SO₂ equiv.</td>
<td>TRACI 2.1, July 2012</td>
<td>North America</td>
<td>Air, Water</td>
</tr>
<tr>
<td>Eutrophication<sup>1,2</sup></td>
<td>Eutrophication potential, EP</td>
<td>kg N equiv.</td>
<td>TRACI 2.1, July 2012</td>
<td>North America</td>
<td>Air, Water</td>
</tr>
<tr>
<td>Smog<sup>1,2</sup></td>
<td>Photochemical ozone creation potential, POCP</td>
<td>kg O₃ equiv.</td>
<td>TRACI 2.1, July 2012</td>
<td>North America</td>
<td>Air</td>
</tr>
<tr>
<td>Depletion of abiotic resources – fossil fuels<sup>2</sup></td>
<td>Abiotic Depletion potential, ADP-fossil fuels</td>
<td>MJ surplus energy<sup>3</sup></td>
<td>TRACI 2.1, July 2012 /eco-indicator 99 LCIA methodology<sup>3</sup></td>
<td>Global</td>
<td>Natural resources</td>
</tr>
</tbody>
</table>

Notes:

1. Required in ISO 21930, Clause 8.2.2.1.
2. Required in EN 15804 Clause 7.2.3.
3. A non site-specific recommendation for fossil fuel use characterization was included within the original version of TRACI (Bare et al. 2003, Goedkoop & Spriensma 1999) and this reference methodology is maintained within the release of TRACI 2.1, July 2012 [U.S EPA 2012].
4. Surplus energy per extracted MJ, kg or m³ fossil fuel, as a result of lower quality resources.
2.1.10.2 Parameters Describing Resource Use

The following parameters derived from LCI describing resource use shall be calculated and assigned to the DECLARED or FUNCTIONAL UNIT of product. For this PCR, a door and frame, or a frame only, will represent the Declared or Functional Unit of product.

Table 4
LIFE CYCLE INVENTORY ANALYSIS parameters describing the use of resources

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of RENEWABLE primary energy excluding the RENEWABLE primary energy used as raw materials</td>
<td>MJ, net calorific value (LHV)</td>
</tr>
<tr>
<td>Use of RENEWABLE primary energy resources used as raw materials</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Total use of RENEWABLE primary energy (primary energy and RENEWABLE primary energy resources used as raw materials)</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Use of NON-RENEWABLE primary energy excluding the NON-RENEWABLE primary energy resources used as raw materials</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Use of NON-RENEWABLE primary energy resources use as raw materials</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Total use of NON-RENEWABLE primary energy (primary energy and NON-RENEWABLE primary energy resources used as raw materials)</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Use of SECONDARY MATERIALS</td>
<td>kg</td>
</tr>
<tr>
<td>Use of RENEWABLE SECONDARY FUELS</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Use of NON-RENEWABLE SECONDARY FUELS</td>
<td>MJ, net calorific value</td>
</tr>
<tr>
<td>Use of fresh water resources</td>
<td>m³</td>
</tr>
</tbody>
</table>

SECONDARY FUELS are all combustible materials which were recovered from a previous use or from WASTE from a previous PRODUCT SYSTEM and are used as fuel in a following PRODUCT SYSTEM.
2.1.10.3 Other Environmental Information Describing Different WASTE Categories and Output Flows

The following parameters derived from LCI describing different WASTE categories and output flows shall be calculated and assigned to the DECLARED or FUNCTIONAL UNIT of product.

Table 5
LIFE CYCLE INVENTORY ANALYSIS parameters describing various WASTE categories

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposed-of hazardous WASTE</td>
<td>kg</td>
</tr>
<tr>
<td>Disposed-of non-hazardous WASTE</td>
<td>kg</td>
</tr>
<tr>
<td>Disposed-of radioactive WASTE</td>
<td>kg</td>
</tr>
</tbody>
</table>

Table 6
LIFE CYCLE INVENTORY ANALYSIS parameters describing the output flows

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components for reuse</td>
<td>kg</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>kg</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>kg</td>
</tr>
<tr>
<td>Exported electrical energy</td>
<td>MJ, net calorific value per energy carrier</td>
</tr>
<tr>
<td>Exported thermal energy</td>
<td>MJ, net calorific value per energy carrier</td>
</tr>
</tbody>
</table>

The above parameters quantify the material flows once they have both reached the End-of-WASTE State and left the System Boundary. The “materials for energy recovery” parameter does not include materials for WASTE incineration. WASTE incineration is regarded as a WASTE processing process and remains within the System Boundary.
2.1.11 Additional Technical and Environmental Information

For technical information, please refer to section 3.2.5 Technical Information

2.1.11.1 CO2 Certificates

THIRD PARTY-verified CO2 certificates can be credited in EPDs. EPDs are always valid for a period of 5 years. The COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product manufacturer must provide evidence of discontinuation of CO2 pollution rights in order to obtain credit for the entire period of EPD validity or any part thereof. If CO2 certificates are only provided for one year, either one-fifth can be incorporated in the annual report or the validity of the certificate is limited to one year and can only be extended unchanged following presentation of the certificates.

2.1.12 Ownership, Responsibility, and Liability for the EPD

As per Section 5.5 of EN 15804, a manufacturer or a group of manufacturers is the sole owner and has liability and responsibility for an EPD.

2.1.13 Verification and Validity of an EPD

As per Section 9 of EN 15804, after verification an EPD is valid for a 5 year period from the date of issue, after which it shall be reviewed and re-verified. An EPD shall only be reassessed and updated as necessary to reflect changes in technology or other circumstances that could alter the content and accuracy of the declaration. An EPD does not have to be recalculated after 5 years if the environmental performances of COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product have not changed significantly.

A significant change in the environmental performance of COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product that must be reported to the verifier is ± 10% on any one of the total declared parameters of the EPD (see Tables 5-8). Such a change may require an update of the EPD.

The process for verification and establishing the validity of an EPD shall be in accordance with ISO 14025 and ISO 21930.
2.2 Rules for Creating the Background Report

2.2.1 The Content, Structure, and Accessibility of the LCA Background Report

The Background Report is a systematic and comprehensive summary of the project documentation based on the rules for completing the LCA according to the PCR to support the certification of the EPD. The Background Report must be prepared so as to demonstrate to the verifier that the LCA prepared according to the information required by this PCR, and the EPD document deriving from it, complies with ISO 14025, ISO 14040-44, ISO 21930, and EN 15804.

The Background Report shall include all data and information required by the PCR. The Background Report must be submitted to the verifier under confidentiality (see ISO 14025). The Background Report is not part of the EPD and will not be made publically available by the verifier.

2.2.2 General Information in the Background Report

The Background Report must contain the following general information:

- Commissioner of the LCA study and the organization conducting the LCA study,
- Reporting date,
- The reasons for conducting the study,
- The intended application,
- The target group/audience (i.e., is the EPD intended for business-to-business and/or business-to-consumer communication), and
- Evidence that the LCA study was completed in accordance with the requirements of these PRODUCT CATEGORY RULES with reference to ISO 14040-44 series of standards, ISO 14025, ISO 21930, and EN15804 if applicable.

2.2.3 Scope of the study

2.2.3.1 DECLARED/FUNCTIONAL UNIT

This includes the following:
- Definition, whether the product system represents both the steel door and frame or the frame only.
- Scaling factor to one foot square
- Dimensions of door, if different from three-foot by seven-foot
- Any relevant technical specification(s)
- Calculation rule for averaging data, when the DECLARED/FUNCTIONAL UNIT is defined for:
 (i) A group of similar products produced by different suppliers; or
 (ii) The same product produced at different production sites.

2.2.3.2 Description of the System Boundary

The description of the System Boundary, using a modular approach as outlined in Figure 1, includes the following elements:
- An analysis period for each of the modules considered in the LCA
- A flow chart showing the energy and material inputs and outputs, taking into consideration how plant-level data are allocated to the COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product(s)
- Statement of the omissions of life cycle stages, processes, if any
- Assumptions about power generation, including reference year
- Offsetting methods for possible CO2 certificates
- Assumptions about other background data relevant for describing the System Boundary

2.2.3.3 Explanation of Exclusion of Inputs and Outputs

Exclusions shall not be used in order to hide unfavorable data and shall be governed by the cut-off criteria.

The following procedure shall be followed for the exclusion of inputs and outputs:
- All inputs to and outputs from a UNIT PROCESS for which data are readily available shall be included in the calculation. Data gaps may be filled by conservative assumptions of average or generic data following the requirements in Section 2.1.9. Any such assumptions or use of generic data shall be documented in the Background Report.
- In the event of insufficient input data or data gaps for a UNIT PROCESS, the cut-off criterion shall be 1% of RENEWABLE and NON-RENEWABLE primary energy usage or 1%
of the total mass of this UNIT PROCESS. The total neglected input flows, e.g. per Module A, B, C or D shall be a maximum of 5% of energy usage or mass.

- Particular care should be taken to include material and energy flows known to have the potential to cause significant emissions into air and water or soil related to the environmental impact indicators of this standard.

- Conservative, plausible assumptions and expert judgement can be used to demonstrate compliance with these criteria, and these and the sources must be given.

- Application of the cut-off criteria shall be documented in the Background Report:
 - Description of the application of cut-off criteria and assumptions, and
 - List of processes not taken into consideration.

2.2.4 Inventory Analysis

The data collection and calculation procedures shall be documented in the Background Report and shall include the following:

- Qualitative/quantitative description of UNIT PROCESSES necessary to model the life cycle stages of the DECLARED UNIT, taking into account the provisions of EN ISO 14025 regarding data confidentiality;

- Sources of generic data or literature used to conduct the LCA;

- Validation of data, including:
 - Data quality assessment;
 - Treatment of missing data;

- Allocation principles and procedures, including:
 - Documentation and justification of allocation procedures;
 - Uniform application of allocation procedures;

2.2.4.1 Description of UNIT PROCESSES

Document transparently the modelling of the UNIT PROCESSES underlying the LCA. This can be done in tabular form or with the help of flow-charts such as screenshots from LCA software.

Explain handling of data gaps and models. If several products are declared in one EPD or if one product is produced at several locations, each product or location, and how it’s weighted in the final result, should be documented accordingly.
2.2.4.2 Description of Allocation Procedures

Describe allocations made:

- in the use of SECONDARY MATERIALS as raw materials
- delineating COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product(s) from other products manufactured in the plant
- of multi-input processes if included in the LCA
- of reuse, recycling, and energy recovery

The allocation procedure selected must be justified and the allocation procedure used must follow the requirements as described in Section 2.1.9.3, and must be uniformly applied and documented.

2.2.5 LIFE CYCLE IMPACT ASSESSMENT

The Background Report must include:

- the LCIA procedures, calculations, and results of the study
- the relationship of the LCIA results to the LCI results
- reference to all characterization models, characterization factors and characterization methods used
- a statement that the LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks

2.2.6 Interpretation of the Results

Interpret the LCIA and the calculated impact indicators for the DECLARED or FUNCTIONAL UNIT, providing at least:

- Interpretation of the results based on a DOMINANCE ANALYSIS of indicators (for the relevant Modules)
- Assumptions and limitations associated with the interpretation of results as declared in an EPD, both methodology and data-related
- The variance from the means of LCIA results should be described if generic data are declared from several sources or for a range of similar products
- Data quality assessment
- Full transparency in terms of value choices, rationales, and expert judgements that may have affected the LCA.
The influence of assumptions due to data gaps or other uncertainties should be assessed with a sensitivity analysis, as far as the assumptions are relevant to the result.

2.2.7 Documentation of Additional Information

The Background Report shall include any documentation on any additional environmental information declared in an EPD. Such documentation may be supplied as copies to the verifier, for example:

- Laboratory results/measurements for the content declared (i.e. recycled content)
- Laboratory results/measurements of functional/technical performance
- Documentation on declared technical information on individual life cycle stages that have not been considered in the LCA of the product and that will be used for the assessment of buildings (e.g., transport distances, cleaning cycles, recycling programs, etc.)
- Laboratory results/measurements for the declaration of emissions to indoor air, soil and water during the product’s Use Stage

3.0 Content of the Environmental Product Declaration

The following describes the format and information for creating an EPD for COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES.

3.1 Content of the EPD

3.1.1 Summary

The summary must contain the following elements:

- Product name (including product code(s) where applicable)
- Declaration holder: the manufacturer completing the EPD
Commercial Steel Doors and/or Steel Frames
UL 9005

According to ISO 14025

Full name, logo, and website of PROGRAM OPERATOR
Declaration number as provided by the PROGRAM OPERATOR
Date of issuance
End date of validity period (5 years after issuance)
Reference PCR (name, version)
Signature of the LCA and EPD verifiers
Outline of the content in the EPD
EPD type shall be declared and shall specify which life-cycle stages are not considered, if the EPD is not based on an LCA covering all stages
Explanatory information about the EPD content can be obtained at (http://www.ul.com/global/eng/pages/offering/businesses/environment/services/certification/epd/index.jsp) or send an email to epd@ul.com
Optional: product image(s)
The information from Table 7 must be included:

<table>
<thead>
<tr>
<th>PCR REVIEW, was conducted by:</th>
</tr>
</thead>
<tbody>
<tr>
<td><name and organization of the chairman, and information on how to contact the chairman through the PROGRAM OPERATOR></td>
</tr>
</tbody>
</table>

Independent verification of the declaration and data, according to ISO 14025:2006 and ISO 21930:2007

<table>
<thead>
<tr>
<th>internal</th>
<th>external</th>
</tr>
</thead>
</table>

(Where appropriate) Third-Party verifier:

The header must contain the following elements:

Declaration Holder (i.e. the manufacturer completing the EPD)
Product name (product number)
The statement: “according to ISO 14025”
Declaration number
Date of issuance

As specified in ISO 14025, Clause 9.4 and ISO 21930, Clause 5.4, third party verification is optional for B to B communication and mandatory for B to C communication.

[57]
3.2 Product Description

The COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product(s) must be described and description shall contain all the information required in Section 2.1.3, Product Description. The COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product shall be described by its technical and functional properties and its application ranges.

The LCA can be conducted for either an average product or a specific product. In the case where an LCA is calculated as average environmental performance for COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product(s) a statement to that effect shall be included in the EPD together with a description of the range of variation of the LCIA results. For products produced in multiple locations, the locations of the manufacturer’s factories/plants shall be reported in the declaration.

The product description must clearly state if the product is:
- A specific product from a specific factory/plant of a manufacturer
- A specific product as an average from several of the manufacturer’s plants
- An average product from a manufacturer’s plant
- An average product from several of the manufacture’s plants
- A specific product as an average from several manufacturers’ plants
- An average product as an average from several manufacturers’ plants

The EPD shall state the geographic regions for which the LCA is representative. In the case where an EPD declares an average environmental performance for a number of products a statement to that effect shall be included in the declaration together with a description of the range/variability of the LCIA results if significant.

3.2.1 Product Characterization

The COMMERCIAL STEEL DOOR AND FRAME OR THE COMMERCIAL FRAME ONLY product system must be described. This description includes the condition in which the product is provided to the customer, any installation services, and secondary equipment such as accessories, manuals, etc. must be indicated.

3.2.2 Application
3.2.3 Technical Information

The technical information as contained on the manufacturer's Technical Data Sheet must be provided, with reference to the test standard if applicable, for the **COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES** product. Dimensions are to be expressed per **FUNCTIONAL UNIT** or per **DECLARED UNIT**. The following information shall at least be provided:

(i) Steady-state thermal transmittance and performance rating based on SDI 113-13 Standard Practice for Determining the Steady-State Thermal Transmittance of Steed Door and Frame Assemblies

(ii) Air Leakage rate based on ANSI/UL 1784-2001 Air Leakage Test of Door Assemblies

(iii) Indoor-outdoor sound attenuation according to ASTM E1332 Standard Classification for Rating Outdoor-Indoor Sound Attenuation

3.2.4 Placing on the Market/ Application Rules

State the relevant ANSI/SDI standard(s) and/or general technical approval or comparable national regulation. Standards must be quoted as illustrated in the example shown:

- e.g. ANSI/SDI A250.4-2011 Test Procedure and Acceptance Criteria for Physical Endurance for Steel Doors, Frames and Frame Anchors

3.2.5 Delivery Status

State the dimensions/quantities of products declared as delivered to the customer.

3.2.6 Base Materials / ANCILLARY Materials
The product’s material composition given as mass percent to enable the user of the EPD to understand the composition of the product as-delivered. For confidentiality reasons, the declaration of the product formulation is optional for specific product and manufacturer EPDs. Either the product formulation or the SDS of the product must be reported, where required by regulation.

3.2.7 Manufacture

The manufacturing process must be described and can be illustrated using a simple graphic. If the EPD applies for several locations, the production processes for all locations must be described. Quality management systems may optionally be referred to.

3.2.8 Environment and Health During Manufacturing

Declaration of the environmental pollution abatement equipment installed at the surveyed plants, for example to control particulate matter (PM) emissions, is optional. Any other environmentally friendly practice dealing with emissions to air, water, and soil, or to WASTE treatment, may be reported as well. If an Environment Management System is in place it may be referred to.

3.2.9 Packaging

Describe product-specific packaging: type, composition, and possible reuse of packaging materials (paper, pallets, films, etc.).

3.2.10 Product Installation

Describe the methods, machinery, tools, ANCILLARY materials, dust extraction, noise reduction, etc. to be used during product installation.

3.2.11 Condition of Use

If applicable, describe special features of product for the period of use that have not been discussed elsewhere in the EPD.

3.2.12 Environment and Health During Use
Information on the relationships between products, the environment, and health; possible content of harmful substances or emissions including radiation. Any recommendations concerning cleaning, maintenance, etc., of the COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product should be listed in this section.

3.2.13 REFERENCE SERVICE LIFE (RSL)

The RSL shall only be specified by the manufacturer for “Cradle-to-building- with Use Stage (Option 3)” and “Cradle-to-grave” type of EPDs (see Table 1 and section 2.1.4).

3.2.14 Extraordinary effects (Optional)

3.2.14.1 Fire

The information in Table 8 on fire performance according to UL 10B or UL 10C or other established national standards.

<table>
<thead>
<tr>
<th>Fire Protection</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Material Class</td>
<td></td>
</tr>
<tr>
<td>Burning Droplets</td>
<td></td>
</tr>
<tr>
<td>Smoke Gas Development</td>
<td></td>
</tr>
</tbody>
</table>

3.2.14.2 Water

Provide information on product performance including possible impacts on the environment following unforeseeable influence of water, e.g. flooding, in this section.

3.2.15 Re-Use Stage

The possibilities of re-use, recycling, and energy recovery must be described in this section.

3.2.16 Disposal
Commercial Steel Doors and/or Steel Frames
UL 9005

According to ISO 14025

The possible disposal practices must be indicated.

3.2.17 Additional Information

Optionally, such details as reference source for additional information, e.g., homepage, or reference source for Safety Data Sheet (SDS).

3.3 LIFE CYCLE ASSESSMENT

3.3.1 DECLARED UNIT / FUNCTIONAL UNIT

State either the DECLARED UNIT or FUNCTIONAL UNIT as described in Section 2.1.2, as appropriate for the selected EPD type. This must be clearly stated within this section of the EPD whether the product under consideration represents both door and frame or frame only. The section is also to include a description of the grade of the product and, if applicable, it’s RSL.

3.3.2 System Boundary

Describe the System Boundary as required in Section 2.1.5.

3.3.3 Estimates and Assumptions

Describe in this section of the EPD the key assumptions and estimates for interpretation of the LCA.

3.3.4 Cut-off Criteria

Document the use of cut-off limits as per Section 2.1.6 here.

3.3.5 Background Data

Provide the sources for background data used, as described in Section 2.1.9

3.3.6 Data Quality

[62]
Include a summary of the data quality requirements as documented in the Background Report described in Section 2.1.7.

3.3.7 Period Under Consideration

Use average values over a period of twelve months of the quantities of raw materials, energies, ANCILLARY materials, and supplies used by the producing plants. Document any deviations from the 12 month period in this section.

3.3.8 Allocation

Justify, describe, and document the allocation procedure, if any, and its uniform application.

3.3.9 LCA Results

In Table 9, Part A, "Description of the System Boundary" below, all declared Modules shall be indicated with an "X"; all Modules that are not declared shall be indicated with "MND". In Table 9 Part B, C and D columns may be deleted for Modules that are not declared. Indicator values should be declared with three significant digits in exponential form (e.g. 1.23E-5 = 0.0000123). A uniform format should be used for all values of one indicator. If several Modules are not declared and therefore have been deleted from the table, the abbreviations for the indicators can be replaced by the complete names. The RSL for modules B1 through B7 must correspond with the grade of the product as stated in section 3.3.1.

Report characterization factors from the US EPA Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI 2.1 impact categories). Characterization factors taken from the University of Leiden (CML) methodology are optional and shall only be reported for EPDs used outside of North America.
PRODUCT CATEGORY RULE

Commercial Steel Doors and/or Steel Frames
UL 9005

According to ISO 14025

Table 9

LCA results

| Part A - Description of the system boundary (X: included in LCA; MND- module not declared) |
|---------------------------------|-----------------|------------------|-----------------|------------------|-----------------|
| **Product** | **Construction Installation** | **Use** | **End-of-life** | **Benefits of loads beyond the system boundary** |
| A1 | A2 | A3 | A4 | A5 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1 | C2 | C3 | C4 | D | D | D |
| X | X | X | X | X | MND |

Part B - LIFE CYCLE IMPACT ASSESSMENT Results

DECLARED UNIT or **FUNCTIONAL UNIT**: [Insert DECLARED UNIT]

Part B.1 Impact Assessment Methodology: TRACI 2.1

<table>
<thead>
<tr>
<th>Modules included in LCA: (to be reported below)</th>
<th>UNITs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP Global warming potential</td>
<td>kg CO₂ Eq.</td>
</tr>
<tr>
<td>ODP Depletion potential of the stratospheric ozone layer</td>
<td>kg CFC 11 Eq.</td>
</tr>
<tr>
<td>AP Acidification potential</td>
<td>kg SO₂ Eq.</td>
</tr>
<tr>
<td>EP Eutrophication potential</td>
<td>kg N Eq.</td>
</tr>
<tr>
<td>POCP Photochemical ozone creation potential</td>
<td>kg O₃ Eq.</td>
</tr>
<tr>
<td>ADPF</td>
<td>Abiotic depletion potential for fossil resources</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Part B.2- Impact Assessment Methodology: CML (optional)

<table>
<thead>
<tr>
<th>Modules included in LCA: (to be reported below)</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>ODP</td>
<td>Depletion potential of stratospheric ozone layer</td>
</tr>
<tr>
<td>AP</td>
<td>Acidification potential</td>
</tr>
<tr>
<td>EP</td>
<td>Eutrophication potential</td>
</tr>
<tr>
<td>POCP</td>
<td>Photochemical ozone creation potential</td>
</tr>
<tr>
<td>ADPE</td>
<td>Abiotic depletion potential for non-fossil resources</td>
</tr>
<tr>
<td>ADPF</td>
<td>Abiotic depletion potential for fossil resources</td>
</tr>
</tbody>
</table>

Part C- Resource Use

<table>
<thead>
<tr>
<th>Modules included in LCA: (to be reported below)</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERE</td>
<td>Use of RENEWABLE primary energy excluding the RENEWABLE primary energy used as raw materials</td>
</tr>
<tr>
<td>PERM</td>
<td>Use of RENEWABLE primary energy resources used as raw materials</td>
</tr>
<tr>
<td>PERT</td>
<td>Total use of RENEWABLE primary energy (primary energy and RENEWABLE primary energy resources used as raw materials)</td>
</tr>
<tr>
<td>PENRE</td>
<td>Use of NON-RENEWABLE primary energy excluding the NON-RENEWABLE primary energy resources used as raw materials</td>
</tr>
<tr>
<td>PENRM</td>
<td>Use of NON-RENEWABLE primary energy resources use as raw materials</td>
</tr>
<tr>
<td>PENRM</td>
<td>Total use of NON-RENEWABLE primary energy (primary energy and NON-RENEWABLE primary energy resources)</td>
</tr>
</tbody>
</table>
PRODUCT CATEGORY RULE

Commercial Steel Doors and/or Steel Frames
UL 9005

According to ISO 14025

<table>
<thead>
<tr>
<th>Modules included in LCA: (to be reported below)</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM Use of SECONDARY MATERIALS kg</td>
<td></td>
</tr>
<tr>
<td>RSF Use of RENEWABLE SECONDARY FUELS MJ</td>
<td></td>
</tr>
<tr>
<td>NRSF Use of NON-RENEWABLE SECONDARY FUELS MJ</td>
<td></td>
</tr>
<tr>
<td>FW Use of FRESH WATER resources m</td>
<td></td>
</tr>
</tbody>
</table>

Part D- Output Flows and WASTE Categories

HWD Disposed-of-hazardous WASTE kg	
NHWD Disposed-of non-hazardous WASTE kg	
RWD Disposed-of Radioactive WASTE kg	
CRU Components for reuse kg	
MFR Materials for recycling kg	
MET Materials for energy recovery kg	
EEE Exported electrical energy MJ	
EET Exported thermal energy MJ	

3.3.9.1 Comparability of EPDs

EPDs must not contain statements of the superiority of one product over a competitor’s product that performs the same functions, or of one manufacturer against another.

COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES EPDs must not contain directly or indirectly such COMPARATIVE ASSERTIONS.

The following ISO statements indicate the EPD comparability limitations and intent to avoid any market distortions or misinterpretation of EPDs based on this COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES PCR.

ISO 14025 requires this statement be included: “Environmental declarations from different programs may not be comparable”.

In conformance with ISO 21930, Clause 5.6, a statement should be included that indicates, “the comparison of the environmental performance of COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES using the EPD information shall be based on the product’s use in and it’s
impacts on or within the building, and shall consider the complete life cycle with all
INFORMATION MODULEs”.

All COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES EPDs that include Use Stage should
include this statement: “Use-Stage impacts of the - IBTS are modeled for a specific scenario
and are only comparable with products developed using the exact same Use Stage
scenario”.

This statement must be included: "Full conformance with the PCR for North American
COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES products allows EPD comparability only
when all stages of a COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product’s life cycle
have been considered. However, variations and deviations are possible”. Example of
variations: Different LCA software may lead to differences in LCI data quality upstream or
downstream of the Stages declared.

The EPD owner shall transparently indicate any comparability limitations here. For example,
any deviation from the PCR requirements must be stated.

3.3.10 LIFE CYCLE ASSESSMENT Interpretation

To facilitate comprehension of the LCA, both the aggregate indicators of the LCI and the
estimated impact outlined in Section 5 “LCA results” must be interpreted. This interpretation
must also include a description of the time frame and/or variation of the LCIA results if the
EPD is for several products. An illustration of the results with figures is recommended. For
example, the DOMINANCE ANALYSIS or the distribution of impacts across the Modules, or
others should be provided, as appropriate for a reader’s understanding of the environmental
profile of COMMERCIAL STEEL DOORS AND/OR STEEL FRAMES product.

3.3.11 Other Required Evidence

As a general rule, all statements must be documented with measured data and supported by
the corresponding test certificates. In the case of substances which are declared “not
detectable”, the limit of detection must be stated. The methods of evidence and the test
conditions are to be indicated. Interpreting statements such as “… free of …” or “… are
entirely harmless …” are not permissible. If evidence is not provided the reasons are to be
indicated in the EPD.
3.4 LCA Scenarios and Additional Technical Information

Table 10 LCA scenarios and additional technical information

<table>
<thead>
<tr>
<th>A4 module- Construction stage - Transport to the Building Site</th>
<th>Value</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel type and consumption of vehicle or vehicle type used for transport; e.g., long distance truck, ship, etc.</td>
<td>Liter of fuel type per distance or vehicle type</td>
<td></td>
</tr>
<tr>
<td>Transport Distance</td>
<td>km</td>
<td></td>
</tr>
<tr>
<td>Capacity utilization (including empty runs)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Bulk density of transported products</td>
<td>kg/m³</td>
<td></td>
</tr>
<tr>
<td>Volume capacity utilization factor (factor: =1 or <1 or 1 for compressed or nested packaged products)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A4 module- Construction stage - Installation into the Building</th>
<th>Value</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCILLARY materials for installation (specified by material)</td>
<td>kg and dimensions as appropriate</td>
<td></td>
</tr>
<tr>
<td>WATER CONSUMPTION</td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Other resources</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Quantitative description of energy type (regional mix) and consumption during the installation process</td>
<td>kWh or MJ</td>
<td></td>
</tr>
<tr>
<td>WASTE materials on the building site before WASTE processing, generated by the product's installation (specified by type)</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Output materials (specified by type) as result of WASTE processing at the building site; e.g., of collection for recycling, for energy recovery, disposal (specified by route)</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Direct emissions to ambient air, soil and water</td>
<td>kg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use Stage</th>
<th>Value</th>
<th>Dimensions</th>
</tr>
</thead>
</table>
Commercial Steel Doors and/or Steel Frames

UL 9005

According to ISO 14025

<table>
<thead>
<tr>
<th>B1 module</th>
<th>Use of the installed product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on B1 is covered under Section 3.2.12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B2 module</th>
<th>Use Stage - Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance process</td>
<td>Description or source where description can be found</td>
</tr>
<tr>
<td>Maintenance cycle (e.g., number of battery changes and batteries per RSL)</td>
<td>number per RSL, or interval</td>
</tr>
<tr>
<td>Net WATER CONSUMPTION during maintenance</td>
<td>m³</td>
</tr>
<tr>
<td>ANCILLARY materials for maintenance; e.g., cleaning agent, specify materials</td>
<td>kg/cycle</td>
</tr>
<tr>
<td>Energy input during maintenance; e.g., vacuum cleaning, energy carrier type, e.g. electricity; and amount</td>
<td>kWh or MJ</td>
</tr>
<tr>
<td>WASTE material resulting from maintenance (specify materials)</td>
<td>Kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B3 module</th>
<th>Use stage - Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair process</td>
<td>Description or source where description can be found</td>
</tr>
<tr>
<td>Inspection process</td>
<td>Description or source where description can be found</td>
</tr>
<tr>
<td>Repair cycle</td>
<td>number per RSL, or interval</td>
</tr>
<tr>
<td>WATER CONSUMPTION</td>
<td>m³</td>
</tr>
<tr>
<td>ANCILLARY materials, e.g., lubricant; specify materials</td>
<td>Kg</td>
</tr>
<tr>
<td>Energy input during repair, e.g., energy carrier type, welding gases, and amount</td>
<td>kWh</td>
</tr>
<tr>
<td>WASTE material resulting from repair, (specify materials)</td>
<td>Kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B4/B5 module</th>
<th>Use stage - Replacement/Refurbishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement cycle</td>
<td>number per RSL, or interval</td>
</tr>
</tbody>
</table>
Energy input during replacement
- e.g. energy carrier type, e.g., electricity, welding gases; and amount, if applicable and significant
- **Unit**: kWh

Exchange of worn parts
- during the product’s life cycle, e.g., zinc galvanized steel sheet. Specify materials
- **Unit**: Kg

B6 and B7 module - Use stage: Operational Energy and Water Use
- (Building ESL= 60 years)

<table>
<thead>
<tr>
<th>ANCILLARY materials specified by material</th>
<th>Value</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net WATER CONSUMPTION</td>
<td></td>
<td>m³</td>
</tr>
<tr>
<td>Type of energy carrier, e.g., electricity, natural gas, district heating</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>Power output of equipment</td>
<td></td>
<td>kW</td>
</tr>
<tr>
<td>Characteristic performance, e.g., energy efficiency, emissions, variation of performance with capacity utilization, etc.</td>
<td></td>
<td>dimensions as appropriate</td>
</tr>
<tr>
<td>Further assumptions for scenario development, e.g., frequency and period of use, number of occupants</td>
<td></td>
<td>dimensions as appropriate</td>
</tr>
</tbody>
</table>

C1-C4 module - End-of-Life

<table>
<thead>
<tr>
<th>WASTE collected separately</th>
<th>Value</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>WASTE collected with mixed construction WASTE</td>
<td></td>
<td>kg</td>
</tr>
<tr>
<td>Reuse</td>
<td></td>
<td>kg</td>
</tr>
<tr>
<td>Recycling</td>
<td></td>
<td>kg</td>
</tr>
<tr>
<td>Energy Recovery</td>
<td></td>
<td>kg</td>
</tr>
<tr>
<td>Landfilling</td>
<td></td>
<td>kg</td>
</tr>
</tbody>
</table>

1165
1166
1167
1168

[70]
3.5 References

The literature referred to in the EPD must be cited in full. Standards relating to evidence and/or technical features already fully quoted in the EPD do not need to be listed here.

3.6 Verification

The verification of the EPD shall record that the LCA-based information and the additional information as declared in the EPD meet the requirements of ISO 14025.